论文标题

DDANET:自动息肉分割的双解码器注意网络

DDANet: Dual Decoder Attention Network for Automatic Polyp Segmentation

论文作者

Tomar, Nikhil Kumar, Jha, Debesh, Ali, Sharib, Johansen, Håvard D., Johansen, Dag, Riegler, Michael A., Halvorsen, Pål

论文摘要

结肠镜检查是检查和检测结直肠息肉的金标准。息肉的定位和描述可以在治疗(例如手术计划)和预后决策中发挥至关重要的作用。息肉分割可以提供详细的边界信息进行临床分析。卷积神经网络改善了结肠镜检查的性能。但是,息肉通常面临各种挑战,例如阶层间变化和噪声。虽然息肉评估的手动标记需要专家的时间,并且容易出现人为错误(例如,遗体病变),但自动化,准确且快速的细分可以提高划定病变界限的质量并降低错过率。辅助挑战提供了一个机会,可以通过对公开可用的HyperKvasir进行培训并在另外一个看不见的数据集中进行测试来基准计算机视觉方法。在本文中,我们提出了一种基于双解码器注意网络的新型架构,称为``ddanet''。我们的实验表明,在Kvasir-Seg数据集上训练的模型并在看不见的数据集上进行了测试,其骰子系数为0.7874,MIOU为0.7010,召回0.7987,精度为0.8577,表明了我们模型的普遍化能力。

Colonoscopy is the gold standard for examination and detection of colorectal polyps. Localization and delineation of polyps can play a vital role in treatment (e.g., surgical planning) and prognostic decision making. Polyp segmentation can provide detailed boundary information for clinical analysis. Convolutional neural networks have improved the performance in colonoscopy. However, polyps usually possess various challenges, such as intra-and inter-class variation and noise. While manual labeling for polyp assessment requires time from experts and is prone to human error (e.g., missed lesions), an automated, accurate, and fast segmentation can improve the quality of delineated lesion boundaries and reduce missed rate. The Endotect challenge provides an opportunity to benchmark computer vision methods by training on the publicly available Hyperkvasir and testing on a separate unseen dataset. In this paper, we propose a novel architecture called ``DDANet'' based on a dual decoder attention network. Our experiments demonstrate that the model trained on the Kvasir-SEG dataset and tested on an unseen dataset achieves a dice coefficient of 0.7874, mIoU of 0.7010, recall of 0.7987, and a precision of 0.8577, demonstrating the generalization ability of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源