论文标题
知情的多文本实体对齐
Informed Multi-context Entity Alignment
论文作者
论文摘要
实体对齐是从多个来源整合知识图(kg)的关键步骤。以前对实体对齐的尝试探索了不同的KG结构,例如基于社区和基于路径的上下文,以学习实体嵌入,但它们在捕获多上下文功能方面受到限制。此外,大多数方法直接利用嵌入相似性来确定实体一致性,而无需考虑实体与关系之间的全球互动。在这项工作中,我们提出了一个知情的多文本实体一致性(IMEA)模型来解决这些问题。特别是,我们介绍了变压器以灵活地捕获关系,路径和邻里环境,并设计整体推理,以基于嵌入相似性和关系/实体功能的估计比对概率。从整体推理获得的一致性证据通过拟议的软标签编辑进一步注入变压器,以告知嵌入学习。几个基准数据集的实验结果证明了与现有的最新实体比对方法相比,我们的IMEA模型的优越性。
Entity alignment is a crucial step in integrating knowledge graphs (KGs) from multiple sources. Previous attempts at entity alignment have explored different KG structures, such as neighborhood-based and path-based contexts, to learn entity embeddings, but they are limited in capturing the multi-context features. Moreover, most approaches directly utilize the embedding similarity to determine entity alignment without considering the global interaction among entities and relations. In this work, we propose an Informed Multi-context Entity Alignment (IMEA) model to address these issues. In particular, we introduce Transformer to flexibly capture the relation, path, and neighborhood contexts, and design holistic reasoning to estimate alignment probabilities based on both embedding similarity and the relation/entity functionality. The alignment evidence obtained from holistic reasoning is further injected back into the Transformer via the proposed soft label editing to inform embedding learning. Experimental results on several benchmark datasets demonstrate the superiority of our IMEA model compared with existing state-of-the-art entity alignment methods.