论文标题
对社会意识到的机器人导航的反馈有效的主动偏好学习
Feedback-efficient Active Preference Learning for Socially Aware Robot Navigation
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Socially aware robot navigation, where a robot is required to optimize its trajectory to maintain comfortable and compliant spatial interactions with humans in addition to reaching its goal without collisions, is a fundamental yet challenging task in the context of human-robot interaction. While existing learning-based methods have achieved better performance than the preceding model-based ones, they still have drawbacks: reinforcement learning depends on the handcrafted reward that is unlikely to effectively quantify broad social compliance, and can lead to reward exploitation problems; meanwhile, inverse reinforcement learning suffers from the need for expensive human demonstrations. In this paper, we propose a feedback-efficient active preference learning approach, FAPL, that distills human comfort and expectation into a reward model to guide the robot agent to explore latent aspects of social compliance. We further introduce hybrid experience learning to improve the efficiency of human feedback and samples, and evaluate benefits of robot behaviors learned from FAPL through extensive simulation experiments and a user study (N=10) employing a physical robot to navigate with human subjects in real-world scenarios. Source code and experiment videos for this work are available at:https://sites.google.com/view/san-fapl.