论文标题

关于立方四阶方程的衰减特性

On the decay property of the cubic fourth-order Schrödinger equation

论文作者

Yu, Xueying, Yue, Haitian, Zhao, Zehua

论文摘要

在这篇简短的论文中,我们证明了在$ \ mathbb {r}^d $($ 5 \ leq d \ leq 8 $)上,立方四阶方程(4NLS)的解决方案享受与线性解决方案相同的(尖端)衰减属性。该结果通过基于相应的全局结果pausader \ cite {pau1}的bootstrap参数证明。该结果可以扩展到具有散射渐近学的更通用的分散方程(包括更多的4NLS模型)。

In this short paper, we prove that the solution of the cubic fourth-order Schrödinger equation (4NLS) on $\mathbb{R}^d$ ($5 \leq d \leq 8$) enjoys the same (pointwise) decay property as its linear solution does. This result is proved via a bootstrap argument based on the corresponding global result Pausader \cite{Pau1}. This result can be extended to more general dispersive equations (including some more 4NLS models) with scattering asymptotics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源