论文标题
faceqgen:半监督面部图像质量评估的深度学习
FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment
论文作者
论文摘要
在本文中,我们开发了FaceQgen,这是基于生成对抗网络的面部图像的无参考质量评估方法,该方法生成了与面部识别精度相关的标量质量度量。 FaceQgen不需要标记为训练的质量措施。它是使用SCFACE数据库从头开始训练的。 FaceQgen将图像恢复应用于未知质量的面部图像,将其转换为规范的高质量图像,即额姿势,均匀背景等。由于低质量的图像经历了更大的变化,因此质量估计是作为原始图像和修复的图像之间的相似性而构建的。我们比较了三种不同的数值质量度量:a)原始图像和还原图像之间的MSE,b)它们的SSIM,c)GAN歧视者的输出评分。结果表明,FaceQgen的质量度量是面部识别准确性的良好估计器。我们的实验包括与针对面部和一般图像设计的其他质量评估方法的比较,以便将面孔定位在最新状态。该比较表明,即使FaceQgen在面部识别准确性预测方面没有超过现有的面部质量评估方法,但它仍然取得了足够的效果,以证明半监督学习方法的潜力(特别是,基于数据驱动的质量估算方法)(尤其是基于数据驱动的学习能力,可以在每个受试者中提高质量的能力),从而可以在未来的质量上提高质量的优势,并且具有对模型的竞争能力,并且具有适当的质量,并且具有适当的模型,并且具有适当的质量,并且具有适当的质量估计,并且具有适当的质量学习能力,并且具有适当的能力,并且具有适当的质量学习能力,并且具有良好的模型,那么良好的质量效果,并且具有良好的质量性能,并且具有质量的质量,并且具有良好的能力,则可以实现良好的质量效果。为了发展。这使得面部Qgen柔性且可扩展,而无需昂贵的数据策划。
In this paper we develop FaceQgen, a No-Reference Quality Assessment approach for face images based on a Generative Adversarial Network that generates a scalar quality measure related with the face recognition accuracy. FaceQgen does not require labelled quality measures for training. It is trained from scratch using the SCface database. FaceQgen applies image restoration to a face image of unknown quality, transforming it into a canonical high quality image, i.e., frontal pose, homogeneous background, etc. The quality estimation is built as the similarity between the original and the restored images, since low quality images experience bigger changes due to restoration. We compare three different numerical quality measures: a) the MSE between the original and the restored images, b) their SSIM, and c) the output score of the Discriminator of the GAN. The results demonstrate that FaceQgen's quality measures are good estimators of face recognition accuracy. Our experiments include a comparison with other quality assessment methods designed for faces and for general images, in order to position FaceQgen in the state of the art. This comparison shows that, even though FaceQgen does not surpass the best existing face quality assessment methods in terms of face recognition accuracy prediction, it achieves good enough results to demonstrate the potential of semi-supervised learning approaches for quality estimation (in particular, data-driven learning based on a single high quality image per subject), having the capacity to improve its performance in the future with adequate refinement of the model and the significant advantage over competing methods of not needing quality labels for its development. This makes FaceQgen flexible and scalable without expensive data curation.