论文标题
解锁软件配置景观的秘密,可访问性,可及性和可转让性
Unlocking the Secrets of Software Configuration Landscapes-Ruggedness, Accessibility, Escapability, and Transferability
论文作者
论文摘要
现代软件系统通常可以高度适应各种利益相关者的不同要求。了解配置和所需性能属性之间的映射在推进基础系统的可控性和调整方面起着基本作用,但由于其黑盒子性质和巨大的组合配置空间,长期以来一直是知识的黑暗孔。在本文中,使用$ 86 $ M的$ 86 $ M评估了来自三个现实世界系统的配置,$ 32 $运行工作负载,我们为可配置的软件系统进行了此类健身景观分析(FLA)之一。通过全面的FLA方法,我们首次表明:$ i)$软件配置风景相当坚固,并具有许多分散的本地Optima; $ ii)$尽管如此,最高的本地Optima仍然可以使用,具有更大的吸引力盆地; $ iii)$最劣质的本地Optima是可逃避的,而简单的扰动; $ iv)$具有不同工作负载的同一系统的景观共享结构相似性,可以利用这些相似性来加快启发式搜索。我们的结果还提供了有关设计用于配置调整的量身定制的元毛术设计的宝贵见解;我们的FLA框架以及收集的数据,为在这个方向上的未来研究奠定了坚实的基础。
Modern software systems are often highly configurable to tailor varied requirements from diverse stakeholders. Understanding the mapping between configurations and the desired performance attributes plays a fundamental role in advancing the controllability and tuning of the underlying system, yet has long been a dark hole of knowledge due to their black-box nature and the enormous combinatorial configuration space. In this paper, using $86$M evaluated configurations from three real-world systems on $32$ running workloads, we conducted one of its kind fitness landscape analysis (FLA) for configurable software systems. With comprehensive FLA methods, we for the first time show that: $i)$ the software configuration landscapes are fairly rugged, with numerous scattered local optima; $ii)$ nevertheless, the top local optima are highly accessible, featuring significantly larger basins of attraction; $iii)$ most inferior local optima are escapable with simple perturbations; $iv)$ landscapes of the same system with different workloads share structural similarities, which can be exploited to expedite heuristic search. Our results also provide valuable insights on the design of tailored meta-heuristics for configuration tuning; our FLA framework along with the collected data, build solid foundation for future research in this direction.