论文标题

稀疏图的奇数颜色

Odd Colorings of Sparse Graphs

论文作者

Cranston, Daniel W.

论文摘要

如果每个非分离顶点都有某种颜色在其邻域上显示出奇数的次数,则称为图的适当着色称为\ emph {奇数}。承认图形$ g $的奇数颜色的最少数量的颜色表示为$χ_o(g)$。这一概念是由Petruševski和škrekovski引入的,他们证明了如果$ G $是平面,则$χ_o(g)\ le 9 $;他们还推测$χ_o(g)\ le 5 $。对于正实数$α$,我们考虑所有图$ g $的最大值$χ_o(g)$,最大平均度小于$α$;我们用$χ_o(\ Mathcal {G}_α)$表示此值。我们注意到,对于所有$α\ ge 4 $,$χ_o(\ Mathcal {G}_α)$均未定义。相比之下,对于[0,4)$中的每个$α\,我们在$χ_o(\ Mathcal {g}_α)$上给出了(几乎尖锐的)上限。最后,我们证明$χ_o(\ Mathcal {G} _ {20/7})= 5 $和$χ_O(\ Mathcal {G} _3)= 6 $。这两个结果都很清晰。

A proper coloring of a graph is called \emph{odd} if every non-isolated vertex has some color that appears an odd number of times on its neighborhood. The smallest number of colors that admits an odd coloring of a graph $G$ is denoted $χ_o(G)$. This notion was introduced by Petruševski and Škrekovski, who proved that if $G$ is planar then $χ_o(G)\le 9$; they also conjectured that $χ_o(G)\le 5$. For a positive real number $α$, we consider the maximum value of $χ_o(G)$ over all graphs $G$ with maximum average degree less than $α$; we denote this value by $χ_o(\mathcal{G}_α)$. We note that $χ_o(\mathcal{G}_α)$ is undefined for all $α\ge 4$. In contrast, for each $α\in[0,4)$, we give a (nearly sharp) upper bound on $χ_o(\mathcal{G}_α)$. Finally, we prove $χ_o(\mathcal{G}_{20/7})= 5$ and $χ_o(\mathcal{G}_3)= 6$. Both of these results are sharp.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源