论文标题
不可压缩的流体流动的独特定理
A Uniqueness Theorem for Incompressible Fluid Flows with Straight Streamlines
论文作者
论文摘要
事实证明,唯一不可压缩的Euler流体流动固定的直线流是由正常线生成的圆形,圆形圆柱或平面平面,流体流量分别是点源,无限源的线源或平面源的流体流量。 证明使用定向线一致性的局部微分几何形状明确集成了Euler方程。
It is proven that the only incompressible Euler fluid flows with fixed straight streamlines are those generated by the normal lines to a round sphere, a circular cylinder or a flat plane, the fluid flow being that of a point source, a line source or a plane source at infinity, respectively. The proof uses the local differential geometry of oriented line congruences to integrate the Euler equations explicitly.