论文标题

数据驱动的方法在隔室流行模型中用于评估无证件感染

Data-driven approach in a compartmental epidemic model to assess undocumented infections

论文作者

Costa, Guilherme S., Cota, Wesley, Ferreira, Silvio C.

论文摘要

对流行病的现象和预测依赖于报告病例的发病率系列来得出给定病原体的基本流行病学参数。预测的两个相关缺点是无证件病例和非药理学干预措施水平的未知分数,它们在不同的地方和时间上极度异质。我们使用隔室模型(包括无症状和预症状传染)描述了一种简单的数据驱动方法,该方法允许估计无证件感染的水平以及有效的生殖数量r t的价值,该病例的时间序列,死亡情况,死亡和流行病学参数。该方法应用于巴西不同市政当局的Covid-19的流行病系列,允许估计各个地方不足报告的异质性水平。在当前框架内得出的生殖数对无症状状态期间的诊断和感染率几乎没有敏感。如果有数据可用并适用于其他流行病学方法和监视数据,则可以将此处描述的方法扩展到更一般的情况。

Nowcasting and forecasting of epidemic spreading rely on incidence series of reported cases to derive the fundamental epidemiological parameters for a given pathogen. Two relevant drawbacks for predictions are the unknown fractions of undocumented cases and levels of nonpharmacological interventions, which span highly heterogeneously across different places and times. We describe a simple data-driven approach using a compartmental model including asymptomatic and presymptomatic contagions that allows to estimate both the level of undocumented infections and the value of effective reproductive number R t from time series of reported cases, deaths, and epidemiological parameters. The method was applied to epidemic series for COVID-19 across different municipalities in Brazil allowing to estimate the heterogeneity level of under-reporting across different places. The reproductive number derived within the current framework is little sensitive to both diagnosis and infection rates during the asymptomatic states. The methods described here can be extended to more general cases if data is available and adapted to other epidemiological approaches and surveillance data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源