论文标题
稀疏数据统计产生的高度指标的解释和推断
Interpretation and inference for altmetric indicators arising from sparse data statistics
论文作者
论文摘要
在2018年,Bornmann和Haunschild(2018a)引入了一个名为“ Mantel-Haenszel商(MHQ)”的新指标,以测量科学计量数据的替代指标(或Altmetrics)。在本文中,我们回顾了《壁炉架量》统计数据,指出文献中的两个错误,并引入了一个新的指标。首先,我们纠正了对MHQ的解释,并提到它仍然是一个有意义的指标。其次,我们纠正了MHQ的方差公式,这导致置信区间较窄。一项仿真研究显示了我们方差估计器和置信区间的出色性能。由于MHQ在文献中不匹配其原始描述,因此我们提出了一个新的指标,即Mantel-Haenszel行风险比(MHRR),以满足需求。讨论了MHRR的解释和统计推断。对于MHRR和MHQ,一个值(较小)的价值比绩效更大(更差)比称为“世界”的参考集更好(差)。
In 2018 Bornmann and Haunschild (2018a) introduced a new indicator called the Mantel-Haenszel quotient (MHq) to measure alternative metrics (or altmetrics) of scientometric data. In this article we review the Mantel-Haenszel statistics, point out two errors in the literature, and introduce a new indicator. First, we correct the interpretation of MHq and mention that it is still a meaningful indicator. Second, we correct the variance formula for MHq, which leads to narrower confidence intervals. A simulation study shows the superior performance of our variance estimator and confidence intervals. Since MHq does not match its original description in the literature, we propose a new indicator, the Mantel-Haenszel row risk ratio (MHRR), to meet that need. Interpretation and statistical inference for MHRR are discussed. For both MHRR and MHq, a value greater (less) than one means performance is better (worse) than in the reference set called the world.