论文标题

在组织病理学图像中的神经塑性图注意网络

Neuroplastic graph attention networks for nuclei segmentation in histopathology images

论文作者

Alon, Yoav, Zhou, Huiyu

论文摘要

现代的组织病理学图像分析依赖于细胞结构的分割来得出生物医学研究和临床诊断所需的定量指标。最先进的深度学习方法主要将卷积层应用于分割,通常是针对特定的实验配置进行高度定制的。通常无法推广到未知数据。由于经典卷积层的模型容量受到有限的学习核的限制,因此我们的方法使用图像的图表表示,并专注于多种增值的节点跃迁。我们提出了一种新的结构,用于对细胞核的语义分割鲁棒性,以差异为实验构型的差异,例如细胞类型的染色和变化。该体系结构由一个新型的神经塑性图注意网络组成,基于残留的图形注意层以及代表组织病理学图像的多个放大率的图形结构的同时优化。图形结构的修改是通过投影生成节点特征的,对架构与图神经网络本身一样重要。它确定可能的消息流和关键属性,以优化平衡放大损失中的注意力,图形结构和节点更新。在实验评估中,我们的框架优于最先进的神经网络的集合,其中通常需要神经元的一部分,并为新核数据集的分割设定了新标准。

Modern histopathological image analysis relies on the segmentation of cell structures to derive quantitative metrics required in biomedical research and clinical diagnostics. State-of-the-art deep learning approaches predominantly apply convolutional layers in segmentation and are typically highly customized for a specific experimental configuration; often unable to generalize to unknown data. As the model capacity of classical convolutional layers is limited by a finite set of learned kernels, our approach uses a graph representation of the image and focuses on the node transitions in multiple magnifications. We propose a novel architecture for semantic segmentation of cell nuclei robust to differences in experimental configuration such as staining and variation of cell types. The architecture is comprised of a novel neuroplastic graph attention network based on residual graph attention layers and concurrent optimization of the graph structure representing multiple magnification levels of the histopathological image. The modification of graph structure, which generates the node features by projection, is as important to the architecture as the graph neural network itself. It determines the possible message flow and critical properties to optimize attention, graph structure, and node updates in a balanced magnification loss. In experimental evaluation, our framework outperforms ensembles of state-of-the-art neural networks, with a fraction of the neurons typically required, and sets new standards for the segmentation of new nuclei datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源