论文标题
螺旋臂中的恒星风和光电离
Stellar winds and photoionization in a spiral arm
论文作者
论文摘要
不同的恒星反馈机制在巨型分子云中的作用尚不清楚。对于在银河螺旋臂中发现的许多相互作用云的地区尤其如此。在本文中,基于Bending等人的先前工作,我们从Galaxy模拟中提取了$ 500 \ times500 \ times100 $ PC部分的螺旋臂部分。我们使用平滑的粒子流体动力学(SPH)以更高的分辨率(每粒子1 m $ _ \ odot $)重新模拟该区域。我们提出了一种从主序列大量恒星中驱动恒星风的方法,并将其与光电离,自我重力,银河电位和ISM加热/冷却一起包括在内。我们还包括积聚半径为0.78 PC的簇 - 链粒子,以跟踪恒星/簇形成。反馈方法与单个云量表上的先前模型一样强大(例如,Dale等人)。我们发现,光离子化主导了螺旋臂部分的破坏,恒星风只产生小腔(最多$ \ sim $ 30 pc)。与没有反馈的对照相比,恒星风不会影响所得的云统计量或综合恒星形成速率/效率,而电离会产生更多的恒星,并且具有更高密度和较高速度分散的云云,而没有反馈。风确实会影响水槽特性,在更多的低质量水槽($ \ sim 10^2 $ m $ _ \ odot $)上分发星星形成,并产生更少的高质量水槽($ \ sim 10^3 $ m $ _ $ _ \ odot $)。总体而言,与摄影作用相比,恒星风充其量是次要的作用,并且在许多措施上,它们的影响都可以忽略不计。
The role of different stellar feedback mechanisms in giant molecular clouds is not well understood. This is especially true for regions with many interacting clouds as would be found in a galactic spiral arm. In this paper, building on previous work by Bending et al., we extract a $500\times500\times100$ pc section of a spiral arm from a galaxy simulation. We use smoothed particle hydrodynamics (SPH) to re-simulate the region at higher resolution (1 M$_\odot$ per particle). We present a method for momentum-driven stellar winds from main sequence massive stars, and include this with photoionization, self-gravity, a galactic potential, and ISM heating/cooling. We also include cluster-sink particles with accretion radii of 0.78 pc to track star/cluster formation. The feedback methods are as robust as previous models on individual cloud scales (e.g. Dale et al.). We find that photoionization dominates the disruption of the spiral arm section, with stellar winds only producing small cavities (at most $\sim$ 30 pc). Stellar winds do not affect the resulting cloud statistics or the integrated star formation rate/efficiency, unlike ionization, which produces more stars, and more clouds of higher density and higher velocity dispersion compared to the control run without feedback. Winds do affect the sink properties, distributing star formation over more low-mass sinks ($\sim 10^2$ M$_\odot$) and producing fewer high-mass sinks ($\sim 10^3$ M$_\odot$). Overall, stellar winds play at best a secondary role compared to photoionization, and on many measures, they have a negligible impact.