论文标题
多社区网络中流行病扩散中感染的峰值分数
Peak fraction of infected in epidemic spreading for multi-community networks
论文作者
论文摘要
减轻大流行全球传播的最有效策略之一(例如,Covid-19)是关闭国际机场。从网络理论的角度来看,这是因为国际机场和航班本质上是在各个社区中扮演桥梁节点和桥梁联系的作用,因此在整个多社区系统中占据了流行性传播特征。在所有流行特征中,感染的峰值分数$ i _ {\ max} $是评估医疗资源能力有限的流行策略的决定性因素,但在多社区模型中很少被认为。在本文中,我们研究了一个通用的两共享系统,该系统通过桥梁节点的分数$ r $及其动态属性,尤其是$ i _ {\ max} $互连,这是在易感性感染的(SIR)模型的演变下。比较系统不同部分的特征时间尺度,使我们能够分析$ i _ {\ max} $的渐近行为与$ r $,as $ r \ rightarrow 0 $,遵循相位图的每个范围内的不同幂律关系。当$ i _ {\ max} $从一个电源法更改为另一种权力时,我们还检测到跨界车,跨越了$ r $驱动的不同幂律制度。我们的结果可以更好地预测作用在桥接节点上的策略的有效性,该策略由power-law指数$ε_i$表示,如$ i _ {\ max} \ propto r^{1/ε_i} $。
One of the most effective strategies to mitigate the global spreading of a pandemic (e.g., COVID-19) is to shut down international airports. From a network theory perspective, this is since international airports and flights, essentially playing the roles of bridge nodes and bridge links between countries as individual communities, dominate the epidemic spreading characteristics in the whole multi-community system. Among all epidemic characteristics, the peak fraction of infected, $I_{\max}$, is a decisive factor in evaluating an epidemic strategy given limited capacity of medical resources, but is seldom considered in multi-community models. In this paper, we study a general two-community system interconnected by a fraction $r$ of bridge nodes and its dynamic properties, especially $I_{\max}$, under the evolution of the Susceptible-Infected-Recovered (SIR) model. Comparing the characteristic time scales of different parts of the system allows us to analytically derive the asymptotic behavior of $I_{\max}$ with $r$, as $r\rightarrow 0$, which follows different power-law relations in each regime of the phase diagram. We also detect crossovers when $I_{\max}$ changes from one power law to another, crossing different power-law regimes as driven by $r$. Our results enable a better prediction of the effectiveness of strategies acting on bridge nodes, denoted by the power-law exponent $ε_I$ as in $I_{\max}\propto r^{1/ε_I}$.