论文标题
偏斜的对称能量和熵的稳定配方,可压缩欧拉方程
A skew-symmetric energy and entropy stable formulation of the compressible Euler equations
论文作者
论文摘要
我们表明,非线性双曲线问题的特定偏斜形式导致能量和熵边界。接下来,我们通过考虑原始变量中可压缩的欧拉方程,将它们转换为偏斜形式并显示如何获得能量和熵估计值来举例说明。最后,我们表明,如果以逐件求和形式制定了该方案,则偏斜配方会导致能量和熵稳定的离散近似值。
We show that a specific skew-symmetric form of nonlinear hyperbolic problems leads to energy and entropy bounds. Next, we exemplify by considering the compressible Euler equations in primitive variables, transform them to skew-symmetric form and show how to obtain energy and entropy estimates. Finally we show that the skew-symmetric formulation lead to energy and entropy stable discrete approximations if the scheme is formulated on summation-by-parts form.