论文标题
超一样式的球形包装具有异常的材料特性
Hyperuniform Jammed Sphere Packings Have Anomalous Material Properties
论文作者
论文摘要
如果空间分布的局部密度波动在长度尺度的极限下消失,则空间分布非常平均。超均匀性是晶体和准晶体的众所周知的特性。然而,最近感兴趣的是无序的超均匀性:没有远距离构级的超均匀尺度的存在。已经提出了堵塞的颗粒包装作为无序过度均匀性的一个例子,但是最近的数值研究表明,许多堵塞的系统相反,在长长的长度尺度上表现出一组复杂的不同行为。我们使用voronoi镶嵌作为定义一组重新变换的工具,这些转换可以在任意加权点过程中施加超均匀性,并表明这些转换可以用于模拟中,以迭代地产生超均匀,机械机械稳定的腹膜软球。这些超一样式的包装显示出非典型的机械性能,尤其是在低频语音激励中,该兴奋表现出高度集体模式的孤立带和围绕零频率的带隙。
A spatial distribution is hyperuniform if it has local density fluctuations that vanish in the limit of long length scales. Hyperuniformity is a well known property of both crystals and quasicrystals. Of recent interest, however, is disordered hyperuniformity: the presence of hyperuniform scaling without long-range configurational order. Jammed granular packings have been proposed as an example of disordered hyperuniformity, but recent numerical investigation has revealed that many jammed systems instead exhibit a complex set of distinct behaviors at long, emergent length scales. We use the Voronoi tesselation as a tool to define a set of rescaling transformations that can impose hyperuniformity on an arbitrary weighted point process, and show that these transformations can be used in simulations to iteratively generate hyperuniform, mechanically stable packings of athermal soft spheres. These hyperuniform jammed packings display atypical mechanical properties, particularly in the low-frequency phononic excitations, which exhibit an isolated band of highly collective modes and a band-gap around zero frequency.