论文标题

跨相机数据关联的图形神经网络

Graph Neural Networks for Cross-Camera Data Association

论文作者

Luna, Elena, SanMiguel, Juan C., Martínez, José M., Carballeira, Pablo

论文摘要

跨摄像机图像数据关联对于许多多摄像机计算机视觉任务任务至关重要,例如多相机行人检测,多摄像机多目标跟踪,3D姿势估算等。该关联任务通常被称为两极图形匹配问题,并且通常通过将最小的水流技术用于计算上的最小数据,并且通常可以通过计算且可以计算出较大的数据。此外,相机通常通过对处理,获得局部解决方案,而不是一次找到全局溶液。另一个关键问题是亲和力测量:不可行的预定距离的广泛使用,例如欧几里得和余弦。本文提出了一种针对全球解决方案的跨胶体数据合作的有效方法,而不是通过成对处理摄像机。为了避免使用固定距离,我们利用以前在此范围中未使用的图形神经网络的连接性,使用消息传递网络共同学习功能和相似性。我们验证了行人多视图关联的建议,显示了EPFL多相机行人数据集的结果。我们的方法大大优于文献数据关联技术,而无需在对其测试的相同情况下接受培训。我们的代码可从\ url {http://www-vpu.eps.uam.es/publications/gnn_cca}获得。

Cross-camera image data association is essential for many multi-camera computer vision tasks, such as multi-camera pedestrian detection, multi-camera multi-target tracking, 3D pose estimation, etc. This association task is typically stated as a bipartite graph matching problem and often solved by applying minimum-cost flow techniques, which may be computationally inefficient with large data. Furthermore, cameras are usually treated by pairs, obtaining local solutions, rather than finding a global solution at once. Other key issue is that of the affinity measurement: the widespread usage of non-learnable pre-defined distances, such as the Euclidean and Cosine ones. This paper proposes an efficient approach for cross-cameras data-association focused on a global solution, instead of processing cameras by pairs. To avoid the usage of fixed distances, we leverage the connectivity of Graph Neural Networks, previously unused in this scope, using a Message Passing Network to jointly learn features and similarity. We validate the proposal for pedestrian multi-view association, showing results over the EPFL multi-camera pedestrian dataset. Our approach considerably outperforms the literature data association techniques, without requiring to be trained in the same scenario in which it is tested. Our code is available at \url{http://www-vpu.eps.uam.es/publications/gnn_cca}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源