论文标题
多项式GCD的简单算法
Simple algorithm for GCD of polynomials
论文作者
论文摘要
基于Bezout方法,我们提出了一种简单的算法来确定两个多项式的{\ tt gcd},它不需要划分,例如欧几里得算法或确定性计算,例如Sylvester矩阵算法。该算法仅需$ n $步骤才能获得$ n $的多项式。正式的操作给出了任何程度的判别或结果,而无需划分或决定性计算。
Based on the Bezout approach we propose a simple algorithm to determine the {\tt gcd} of two polynomials which doesn't need division, like the Euclidean algorithm, or determinant calculations, like the Sylvester matrix algorithm. The algorithm needs only $n$ steps for polynomials of degree $n$. Formal manipulations give the discriminant or the resultant for any degree without needing division nor determinant calculation.