论文标题
增强可穿戴式脑部计算机界面的安全性和隐私
Enhancing the Security & Privacy of Wearable Brain-Computer Interfaces
论文作者
论文摘要
大脑计算界面(BCI)用于大量的安全/关键应用程序中,从医疗保健到智能通信和控制。可穿戴的BCI设置通常涉及连接到移动设备的头部安装传感器,并结合基于ML的数据处理。因此,它们容易受到使用的多种攻击,可以泄漏用户的脑电波数据,或者在最坏的情况下对远程攻击者的BCI辅助设备的控制权。在本文中,我们:(i)从操作系统和对抗机器学习的角度分析对现有的可穿戴BCI产品的全系统安全和隐私威胁; (ii)引入Argus,这是第一个用于减轻这些攻击的可穿戴BCI应用程序的信息流控制系统。 Argus的特定于域的设计可在适用于现有BCI用例的Linux ARM平台上实现轻巧的实现。我们对现实世界中BCI设备(Muse,Neurosky和OpenBCI)的概念证明攻击使我们发现了六个主要攻击媒介堆栈中的300多个漏洞。我们的评估表明,Argus在跟踪敏感的数据流并以可接受的记忆和性能开销(<15%)方面限制了这些攻击非常有效。
Brain computing interfaces (BCI) are used in a plethora of safety/privacy-critical applications, ranging from healthcare to smart communication and control. Wearable BCI setups typically involve a head-mounted sensor connected to a mobile device, combined with ML-based data processing. Consequently, they are susceptible to a multiplicity of attacks across the hardware, software, and networking stacks used that can leak users' brainwave data or at worst relinquish control of BCI-assisted devices to remote attackers. In this paper, we: (i) analyse the whole-system security and privacy threats to existing wearable BCI products from an operating system and adversarial machine learning perspective; and (ii) introduce Argus, the first information flow control system for wearable BCI applications that mitigates these attacks. Argus' domain-specific design leads to a lightweight implementation on Linux ARM platforms suitable for existing BCI use-cases. Our proof of concept attacks on real-world BCI devices (Muse, NeuroSky, and OpenBCI) led us to discover more than 300 vulnerabilities across the stacks of six major attack vectors. Our evaluation shows Argus is highly effective in tracking sensitive dataflows and restricting these attacks with an acceptable memory and performance overhead (<15%).