论文标题

在极端电子激发引起的固体中建模时间分辨动力学

Modeling time-resolved kinetics in solids induced by extreme electronic excitation

论文作者

Medvedev, N., Akhmetov, F., Rymzhanov, R. A., Voronkov, R., Volkov, A. E.

论文摘要

我们提出了一种并发的蒙特卡洛(MC) - 分子动力学(MD)方法,用于建模物质响应对其电子系统的激发。这两种方法在一个代码Trekis-4中的每个时间步骤都合并。 MC模型描述了辐射的到来,在当前实现中,该辐射可以由光子,电子或快速离子组成。它还可以追溯到二级颗粒,电子和孔的激发层面以及由于散射引起的原子的能量交换。使用MD模型模拟激发的原子系统。我们提出了一种简单有效的方法,以通过将合奏的势能转换为原子的动能,从而解决了共价材料中电子原子能量转移的非热效应,可以将其直接实现为MD模拟。这种合并的MC-MD方法使我们能够对电子,电子和原子系统的激发动力学的时间分辨跟踪,及其对沉积剂量的同时反应。作为原则证明的例子,我们表明,提出的方法描述了X射线照射后与紧密结合MD达成一致的原子动力学,其计算​​需求更加负担得起。新模型还使我们能够深入了解来自离子撞击激发的非平衡电子系统的能量沉积过程中原子系统的行为。

We present a concurrent Monte Carlo (MC) - molecular dynamics (MD) approach to modeling of matter response to excitation of its electronic system. The two methods are combined on-the-fly at each time step in one code, TREKIS-4. The MC model describes arrival of irradiation, which in the current implementation can consist of a photon, an electron, or a fast ion. It also traces induced cascades of excitation of secondary particles, electrons and holes, and their energy exchange with atoms due to scattering. The excited atomic system is simulated with an MD model. We propose a simple and efficient way to account for nonthermal effects in the electron-atom energy transfer in covalent materials via conversion of potential energy of the ensemble into the kinetic energy of atoms, which can be straightforwardly implemented into an MD simulation. Such a combined MC-MD approach enables us time-resolved tracing of the excitation kinetics of both, electronic and atomic systems, and their simultaneous response to a deposited dose. As a proof-of-principle example, we show that proposed method describes atomic dynamics after X-ray irradiation in a good agreement with tight-binding MD, with much more affordable computational demands. The new model also allows us to gain insights into behavior of the atomic system during the energy deposition from a nonequilibrium electronic system excited by an ion impact.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源