论文标题

使用回归设施的位置驱动器,通过感应地位置驱动器的致密空气质量地图

Dense Air Quality Maps Using Regressive Facility Location Based Drive By Sensing

论文作者

Paliwal, Charul, Biyani, Pravesh

论文摘要

当前,固定静态传感是监视环境数据(例如城市空气质量)的主要方法。但是,要获得密集的空间覆盖范围,需要大量的静态显示器,从而使其成为昂贵的选择。通过将它们部署在移动的车辆上(通过传感范式称为驱动器)上的静态传感器,可以仅使用一小部分静态传感器来实现密集的时空覆盖范围。空气质量数据中存在的冗余可以通过处理稀疏采样的数据来利用矩阵完成技术来估算其余未观察到的数据点。但是,插补的准确性取决于移动传感器捕获空气质量矩阵的固有结构的程度。因此,挑战是选择在时空中执行代表性抽样的一组路径(使用车辆)。文献中的大多数作品用于车辆子集选择的重点是通过最大化不同位置和时间戳的样品数量来最大化时空覆盖范围,这不是有效的代表性抽样策略。我们通过Sensing向基于位置的回归设施提供了回归设施,这是一个有效的车辆选择框架,该框架结合了相邻位置的平滑度和自回旋时间相关性,同时选择了最佳的车辆组以进行有效的时空采样。我们表明,通过传感问题进行了拟议的驱动器,从而将自己放在贪婪的算法上,但具有性能保证。我们评估了从印度德里的公共交通舰队中选择子集的框架。我们说明所提出的方法针对基线方法示例了代表性时空数据,从而减少了模拟空气质量数据的外推误差。因此,我们的方法有可能提供具有成本效益的密集空气质量图。

Currently, fixed static sensing is a primary way to monitor environmental data like air quality in cities. However, to obtain a dense spatial coverage, a large number of static monitors are required, thereby making it a costly option. Dense spatiotemporal coverage can be achieved using only a fraction of static sensors by deploying them on the moving vehicles, known as the drive by sensing paradigm. The redundancy present in the air quality data can be exploited by processing the sparsely sampled data to impute the remaining unobserved data points using the matrix completion techniques. However, the accuracy of imputation is dependent on the extent to which the moving sensors capture the inherent structure of the air quality matrix. Therefore, the challenge is to pick those set of paths (using vehicles) that perform representative sampling in space and time. Most works in the literature for vehicle subset selection focus on maximizing the spatiotemporal coverage by maximizing the number of samples for different locations and time stamps which is not an effective representative sampling strategy. We present regressive facility location-based drive by sensing, an efficient vehicle selection framework that incorporates the smoothness in neighboring locations and autoregressive time correlation while selecting the optimal set of vehicles for effective spatiotemporal sampling. We show that the proposed drive by sensing problem is submodular, thereby lending itself to a greedy algorithm but with performance guarantees. We evaluate our framework on selecting a subset from the fleet of public transport in Delhi, India. We illustrate that the proposed method samples the representative spatiotemporal data against the baseline methods, reducing the extrapolation error on the simulated air quality data. Our method, therefore, has the potential to provide cost effective dense air quality maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源