论文标题
时间扭曲功能的随机过程模型
A Stochastic Process Model for Time Warping Functions
论文作者
论文摘要
时间扭曲功能提供了数学表示,以测量功能数据中的相位变异性。最近的研究开发了各种方法,以估计功能之间的最佳扭曲并提供非欧国模型。但是,时间扭曲功能的原则性,线性,生成的模型仍未探索。这是一个极具挑战性的问题,因为翘曲功能的空间与常规的欧几里得指标非线性。为了解决这个问题,我们为时间扭曲功能提出了一个随机过程模型,其中关键是在时间扭曲空间上定义线性的内部产品结构,然后将翘曲功能转换为$ \ Mathbb l^2 $ euclidean空间的子空间。在扭曲功能上有某些限制,这种转换是等肌构象。在变换的空间中,我们在希尔伯特空间中采用$ \ mathbb l^2 $基础来代表。这个新框架可以通过使用不同类型的随机过程轻松构建时间扭曲的生成模型。它也可以用于进行统计推断,例如功能性PCA,功能性方差分析和功能回归。此外,我们通过将其用作贝叶斯注册的新框架来证明该新框架的有效性,并提出了一种有效的梯度方法来解决重要的最大A后验估计。我们使用模拟说明了新的贝叶斯方法,这些模拟适当地表征了时间域中的不均匀和相关约束。最后,我们将新框架应用于著名的伯克利增长数据,并在建模,重新采样,小组比较和分类分析方面获得合理的结果。
Time warping function provides a mathematical representation to measure phase variability in functional data. Recent studies have developed various approaches to estimate optimal warping between functions and provide non-Euclidean models. However, a principled, linear, generative model on time warping functions is still under-explored. This is a highly challenging problem because the space of warping functions is non-linear with the conventional Euclidean metric. To address this problem, we propose a stochastic process model for time warping functions, where the key is to define a linear, inner-product structure on the time warping space and then transform the warping functions into a sub-space of the $\mathbb L^2$ Euclidean space. With certain constraints on the warping functions, this transformation is an isometric isomorphism. In the transformed space, we adopt the $\mathbb L^2$ basis in the Hilbert space for representation. This new framework can easily build generative model on time warping by using different types of stochastic process. It can also be used to conduct statistical inferences such as functional PCA, functional ANOVA, and functional regressions. Furthermore, we demonstrate the effectiveness of this new framework by using it as a new prior in the Bayesian registration, and propose an efficient gradient method to address the important maximum a posteriori estimation. We illustrate the new Bayesian method using simulations which properly characterize nonuniform and correlated constraints in the time domain. Finally, we apply the new framework to the famous Berkeley growth data and obtain reasonable results on modeling, resampling, group comparison, and classification analysis.