论文标题

自动驾驶中的对象检测的自适应实例蒸馏

Adaptive Instance Distillation for Object Detection in Autonomous Driving

论文作者

Lan, Qizhen, Tian, Qing

论文摘要

近年来,知识蒸馏(KD)已被广泛用于得出有效的模型。通过模仿大型教师模型,轻量级的学生模型可以提高效率。但是,大多数现有的知识蒸馏方法都集中在分类任务上。只有有限的研究将知识蒸馏应用于对象检测,尤其是在时间敏感的自主驾驶场景中。在本文中,我们提出自适应实例蒸馏(AID),以选择性地将教师的知识传授给学生,以提高知识蒸馏的性能。与以前的KD方法平均处理所有实例不同,我们的援助可以根据教师模型的预测损失,认真地调整实例的蒸馏权。我们通过对KITTI和可可流量数据集的实验来验证我们的援助方法的有效性。结果表明,我们的方法提高了最先进的注意力引导和非本地蒸馏方法的性能,并在单阶段和两阶段探测器上获得了更好的蒸馏结果。与基线相比,单阶段和两个阶段探测器的平均援助导致平均2.7%和2.1%的地图增加。此外,我们的援助也被证明对于自我缩减以提高教师模型的表现很有用。

In recent years, knowledge distillation (KD) has been widely used to derive efficient models. Through imitating a large teacher model, a lightweight student model can achieve comparable performance with more efficiency. However, most existing knowledge distillation methods are focused on classification tasks. Only a limited number of studies have applied knowledge distillation to object detection, especially in time-sensitive autonomous driving scenarios. In this paper, we propose Adaptive Instance Distillation (AID) to selectively impart teacher's knowledge to the student to improve the performance of knowledge distillation. Unlike previous KD methods that treat all instances equally, our AID can attentively adjust the distillation weights of instances based on the teacher model's prediction loss. We verified the effectiveness of our AID method through experiments on the KITTI and the COCO traffic datasets. The results show that our method improves the performance of state-of-the-art attention-guided and non-local distillation methods and achieves better distillation results on both single-stage and two-stage detectors. Compared to the baseline, our AID led to an average of 2.7% and 2.1% mAP increases for single-stage and two-stage detectors, respectively. Furthermore, our AID is also shown to be useful for self-distillation to improve the teacher model's performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源