论文标题
多体局部动力学的稳定性和准周期性
Stability and quasi-Periodicity of Many-Body Localized Dynamics
论文作者
论文摘要
在理论上和实验中都建立了孤立的多体量子系统中纠缠动力学与非平衡统计数据之间的联系。多体定位(MBL),这是一种现象,其中无序(即随机)链中相互作用的颗粒无法热化,体现了这种联系。但是,由于缺乏分析多体纠缠动态的强大方法,诸如MBL之类的批判现象的系统证明仍然具有挑战性。在本文中,我们通过无序的海森堡链中子系统的纠缠演变中的准周期动力学识别MBL。通过稳定的准周期纠缠动力学来表征MBL的这种新形式 - 稳定意味着它们持续存在在热力学限制中 - 具体地区分了两个竞争性的情况:子系统的局部行为或疾病中的逐渐稳步,疾病速度缓慢,热型系统 - 热型子系统 - 在文献中进行了热的子系统。利用扰动理论,我们通过无限的扰动系列得出了单旋转动力学的,同时还对稀有的griffith区域进行建模(局部热包含)。我们的结果证明,在足够强大的障碍的制度中,单个子系统的纠缠演变在热力学极限中仍然是准周期性的,从而为无序的海森伯格链中MBL动力学的稳定提供了具体的证据。这种行为与MBL相中的子系统纠缠的对数增长形成对比。我们表明,在先前的研究中观察到的对数增长是由统计整体平均产生的,统计整体平均,由于其固有的非恋动力学特征,该平均是MBL系统的固有非恋动力学特征,它植根于其准周期性特征。
The connection between entanglement dynamics and non-equilibrium statistics in isolated many-body quantum systems has been established both theoretically and experimentally. Many-Body Localization (MBL), a phenomenon where interacting particles in disordered (i.e., random) chains fail to thermalize, exemplifies this connection. However, the systematic proof of critical phenomena such as MBL remains challenging due to the lack of robust methods for analyzing many-body entanglement dynamics. In this paper, we identify MBL through quasi-periodic dynamics in the entanglement evolution of subsystems in a disordered Heisenberg chain. This new form of characterizing MBL, through stable quasi-periodic dynamics of entanglement -- where stable means they persist in the thermodynamic limit -- concretely distinguishes between two competing scenarios: fully localized behavior of subsystems or slowly, exponentially slow in disorder, thermalizing subsystems -- a heated controversy in the literature. Utilizing perturbation theory, we derive the entanglement dynamics of single spins through an infinite perturbative series, while also modeling rare Griffiths regions (locally thermal inclusions). Our results prove that in regimes of sufficiently strong disorder, the entanglement evolution of individual subsystems remains quasi-periodic in the thermodynamic limit, thereby providing concrete evidence for the stability of MBL dynamics in disordered Heisenberg chains. This behavior contrasts with the widely reported logarithmic growth of subsystem entanglement in the MBL phase. We show that the logarithmic growth observed in prior studies arises from statistical ensemble averaging, which is prohibited due to the intrinsic non-ergodic dynamics characteristic of MBL systems, rooted in their quasi-periodic features.