论文标题
prékopa-leindler不等式的定量稳定性结果,用于任意可测量功能
A quantitative stability result for the Prékopa-Leindler inequality for arbitrary measurable functions
论文作者
论文摘要
我们证明,如果函数三联体在Prékopa-Leindler不平等中几乎满足平等,那么这些功能就接近了通用的对数符号函数,直到乘法和重新缩放为止。我们的结果适用于所有维度的一般可测量功能,并通过可计算常数提供定量稳定性估计。
We prove that if a triplet of functions satisfies almost equality in the Prékopa-Leindler inequality, then these functions are close to a common log-concave function, up to multiplication and rescaling. Our result holds for general measurable functions in all dimensions, and provides a quantitative stability estimate with computable constants.