论文标题

Gromov-Hausdorff-Prokhorov收敛序列中的球质量和半径

Mass and radius of balls in Gromov-Hausdorff-Prokhorov convergent sequences

论文作者

Stufler, Benedikt

论文摘要

我们调查了Gromov-Hausdorff的一些属性 - Prokhorov收敛序列$(\ Mathsf {X} _N,D _ {\ MathSf {\ Mathsf {X} _N},ν_{\ Mathsf {\ Mathsf {x} _n} _n} _n} _ probiption _ {我们正式认为,如果极限几乎肯定是非原子的,那么对于$ \ mathsf {x} _n $,带有小半径的$ n $ n $ open球必须具有很小的质量。相反,如果极限几乎肯定得到了完全支持,则每个封闭的球中的每个封闭的球,$ \ mathsf {x} _n $,质量很小的半径必须很小。我们没有要求任何新的结果,但是为我们找不到明确参考的属性提供了理由。

We survey some properties of Gromov--Hausdorff--Prokhorov convergent sequences $(\mathsf{X}_n, d_{\mathsf{X}_n}, ν_{\mathsf{X}_n})_{n \ge 1}$ of random compact metric spaces equipped with Borel probability measures. We formalize that if the limit is almost surely non-atomic, then for large $n$ each open ball in $\mathsf{X}_n$ with small radius must have small mass. Conversely, if the limit is almost surely fully supported, then each closed ball in $\mathsf{X}_n$ with small mass must have small radius. We do not claim any new results, but justifications are provided for properties for which we could not find explicit references.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源