论文标题
自稳定的拜占庭耐受性重复的可靠广播
Self-stabilizing Byzantine Fault-tolerant Repeated Reliable Broadcast
论文作者
论文摘要
我们研究了一个众所周知的交流抽象,称为拜占庭可靠广播(BRB)。该抽象在设计和实施易于故障分布式系统中至关重要,因为许多容忍故障的分布式应用程序都需要通信,并在消息传递中可证明保证。我们的研究着重于容易出现流程失败的消息系统的耐故障实现,例如崩溃和恶意行为。 在PODC 1983年,Bracha和Toueg简而言之,BT解决了BRB问题。 BT具有最佳的弹性,因为它可以处理T <N/3的拜占庭过程,其中n是过程的数量。目前的工作旨在通过以自动稳定化的形式扩展其断层模型,这是一种强大的耐断层概念,旨在设计出比BT更强大的解决方案。除了容忍拜占庭和通信故障外,自稳定的系统还可以在发生任意瞬态过失后恢复。这些故障代表了对系统设计用于操作的假设的任何违反(前提是算法代码保持完整)。 据我们所知,我们建议在无签名的消息通讯系统中重复BRB的第一个自动稳定拜占庭式耐受性(BFT)解决方案(遵循BT的问题规格)。我们的贡献包括在BT上进行自动稳定的变化,该变化解决了异步系统的单个实体BRB。我们还考虑了单个现代BRB的回收实例的问题。我们为无时间系统的自动稳定BFT回收促进了同时处理预定义的BRB调用数量,并以此方式可以作为自我稳定的BFT共识的基础。
We study a well-known communication abstraction called Byzantine Reliable Broadcast (BRB). This abstraction is central in the design and implementation of fault-tolerant distributed systems, as many fault-tolerant distributed applications require communication with provable guarantees on message deliveries. Our study focuses on fault-tolerant implementations for message-passing systems that are prone to process-failures, such as crashes and malicious behavior. At PODC 1983, Bracha and Toueg, in short, BT, solved the BRB problem. BT has optimal resilience since it can deal with t < n/3 Byzantine processes, where n is the number of processes. The present work aims at the design of an even more robust solution than BT by expanding its fault-model with self-stabilization, a vigorous notion of fault-tolerance. In addition to tolerating Byzantine and communication failures, self-stabilizing systems can recover after the occurrence of arbitrary transient-faults. These faults represent any violation of the assumptions according to which the system was designed to operate (provided that the algorithm code remains intact). We propose, to the best of our knowledge, the first self-stabilizing Byzantine fault-tolerant (BFT) solution for repeated BRB in signature-free message-passing systems (that follows BT's problem specifications). Our contribution includes a self-stabilizing variation on a BT that solves a single-instance BRB for asynchronous systems. We also consider the problem of recycling instances of single-instance BRB. Our self-stabilizing BFT recycling for time-free systems facilitates the concurrent handling of a predefined number of BRB invocations and, by this way, can serve as the basis for self-stabilizing BFT consensus.