论文标题

多模式最大熵动态游戏

Multimodal Maximum Entropy Dynamic Games

论文作者

So, Oswin, Stachowicz, Kyle, Theodorou, Evangelos A.

论文摘要

具有多代理相互作用的环境通常会导致代理之间的一系列行为方式,这是由于决策过程的固有次优,当代理人解决令人满意的决策时。但是,解决这些动态游戏的现有算法严格是单峰的,并且无法捕获代理的复杂多模式行为。在本文中,我们提出了MMELQGAMES(多模式最大 - 透镜线性二次游戏),这是一种新颖的约束多模式的最大熵公式,用于差异动力学编程算法,用于求解广义的NASH均衡。通过将问题提出为某种动态游戏,具有不完整和不对称的信息,而代理不确定游戏本身的成本和动态,提出的方法能够理解多个局部局部广义的NASH平衡,并通过增强的Lagrangian框架实施了限制,并且从观察到的潜伏模式对贝耶斯进行了贝耶斯的界定。我们评估了所提出的算法在两个说明性示例中的功效:避免碰撞和自主赛车。特别是,我们表明,只有MMELQGAMES才能有效地阻止后车辆,而后车辆可以从多个位置超越后车辆。

Environments with multi-agent interactions often result a rich set of modalities of behavior between agents due to the inherent suboptimality of decision making processes when agents settle for satisfactory decisions. However, existing algorithms for solving these dynamic games are strictly unimodal and fail to capture the intricate multimodal behaviors of the agents. In this paper, we propose MMELQGames (Multimodal Maximum-Entropy Linear Quadratic Games), a novel constrained multimodal maximum entropy formulation of the Differential Dynamic Programming algorithm for solving generalized Nash equilibria. By formulating the problem as a certain dynamic game with incomplete and asymmetric information where agents are uncertain about the cost and dynamics of the game itself, the proposed method is able to reason about multiple local generalized Nash equilibria, enforce constraints with the Augmented Lagrangian framework and also perform Bayesian inference on the latent mode from past observations. We assess the efficacy of the proposed algorithm on two illustrative examples: multi-agent collision avoidance and autonomous racing. In particular, we show that only MMELQGames is able to effectively block a rear vehicle when given a speed disadvantage and the rear vehicle can overtake from multiple positions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源