论文标题

处理有毒语音检测中的偏见:一项调查

Handling Bias in Toxic Speech Detection: A Survey

论文作者

Garg, Tanmay, Masud, Sarah, Suresh, Tharun, Chakraborty, Tanmoy

论文摘要

由于其固有的主观性,检测在线毒性一直是一个挑战。诸如帖子的生产者和消费者的背景,地理,社会政治气候以及背景之类的因素在确定内容是否可以标记为有毒方面起着至关重要的作用。因此,在生产中采用自动毒性检测模型可能会导致他们旨在首先提供帮助的各个群体的旁观。它激发了研究人员对检查意外偏见及其缓解措施的兴趣。由于作品的新生和多面性质,完整的文献在术语,技术和发现中是混乱的。在本文中,我们对现有方法的局限性和挑战进行了系统的研究,以减轻毒性检测的偏见。 我们仔细研究了提出的评估和减轻有毒语音检测偏差的方法。为了检查现有方法的局限性,我们还进行了一个案例研究,以介绍由于基于知识的偏见而引起的偏见转移概念。该调查以关键挑战,研究差距和未来方向的概述结束。尽管在线平台上降低毒性仍然是一个积极的研究领域,但对各种偏见及其缓解策略的系统研究将有助于研究社区产生强大而公平的模型。

Detecting online toxicity has always been a challenge due to its inherent subjectivity. Factors such as the context, geography, socio-political climate, and background of the producers and consumers of the posts play a crucial role in determining if the content can be flagged as toxic. Adoption of automated toxicity detection models in production can thus lead to a sidelining of the various groups they aim to help in the first place. It has piqued researchers' interest in examining unintended biases and their mitigation. Due to the nascent and multi-faceted nature of the work, complete literature is chaotic in its terminologies, techniques, and findings. In this paper, we put together a systematic study of the limitations and challenges of existing methods for mitigating bias in toxicity detection. We look closely at proposed methods for evaluating and mitigating bias in toxic speech detection. To examine the limitations of existing methods, we also conduct a case study to introduce the concept of bias shift due to knowledge-based bias mitigation. The survey concludes with an overview of the critical challenges, research gaps, and future directions. While reducing toxicity on online platforms continues to be an active area of research, a systematic study of various biases and their mitigation strategies will help the research community produce robust and fair models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源