论文标题

机器学习增强量子传感器,用于精确磁场成像

Machine-learning-enhanced quantum sensors for accurate magnetic field imaging

论文作者

Tsukamoto, Moeta, Ito, Shuji, Ogawa, Kensuke, Ashida, Yuto, Sasaki, Kento, Kobayashi, Kensuke

论文摘要

磁场的局部检测对于表征纳米材料和微材料至关重要,并且已经使用各种扫描技术甚至钻石量子传感器实施。钻石纳米颗粒(纳米原子)提供了一个吸引高空间分辨率的有吸引力的机会,因为仅通过将它们连接到表面上,它们就可以在几个10 nm内轻松地靠近目标。可以使用这种随机定向的纳米座集合(NDE)的物理模型,但是实际实验条件的复杂性仍然限制了推论磁场的准确性。在这里,我们演示了磁场成像,高精度为1.8 $ $ t,结合了NDE和机器学习,没有任何物理模型。我们还发现了NDE信号的场方向依赖性,这表明了矢量磁力测定法和现有模型的改进的潜在应用。我们的方法进一步丰富了NDE的性能,以实现可视化原子层材料中介观流和磁性的准确性,并扩大包括生物在内的任意形状的材料中的适用性。这项成就将弥合机器学习和量子感测,以进行准确的测量。

Local detection of magnetic fields is crucial for characterizing nano- and micro-materials and has been implemented using various scanning techniques or even diamond quantum sensors. Diamond nanoparticles (nanodiamonds) offer an attractive opportunity to chieve high spatial resolution because they can easily be close to the target within a few 10 nm simply by attaching them to its surface. A physical model for such a randomly oriented nanodiamond ensemble (NDE) is available, but the complexity of actual experimental conditions still limits the accuracy of deducing magnetic fields. Here, we demonstrate magnetic field imaging with high accuracy of 1.8 $μ$T combining NDE and machine learning without any physical models. We also discover the field direction dependence of the NDE signal, suggesting the potential application for vector magnetometry and improvement of the existing model. Our method further enriches the performance of NDE to achieve the accuracy to visualize mesoscopic current and magnetism in atomic-layer materials and to expand the applicability in arbitrarily shaped materials, including living organisms. This achievement will bridge machine learning and quantum sensing for accurate measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源