论文标题

汇总和Veronese品种

Sumsets and Veronese varieties

论文作者

Colarte-Gómez, Liena, Elias, Joan, Miró-Roig, Rosa M.

论文摘要

在本文中,到任何子集$ \ Mathcal {a} \ subset \ Mathbb {z}^{n} $我们明确地将唯一的单次投影$ y_ { $ t \ mathcal {a} $。此链接允许我们解决确定多项式$ p _ {\ mathcal {a}}} \ in \ mathbb {q} [t] $的经典问题。 = P _ {\ MathCal {a}}(T)$ for $ t \ geq T_0 $和最小整数$ n_0(\ nathcal {a})\ leq t_0 $,为此条件满足,即所谓的{\ em em em ex em e em eaptrion}的$ | t \ nmathcal |我们使用castelnuovo-蒙福福德的规律性和$ y_ {n,d _ {\ Mathcal {a}}} $的几何形状来描述多项式$ p _ {\ nathcal {a}}}(t)(t)$,并在$ n_0(\ new_0(\ new_0)$ new bunds of Mathcal of new bunds of new bunds in} a} a} a} a} a} $ { $ \ Mathcal {a} $;反之亦然,我们应用总和的理论来获取品种的几何信息$ y_ {n,d _ {\ Mathcal {a}}} $。

In this paper, to any subset $\mathcal{A} \subset \mathbb{Z}^{n}$ we explicitly associate a unique monomial projection $Y_{n,d_{\mathcal{A}}}$ of a Veronese variety, whose Hilbert function coincides with the cardinality of the $t$-fold sumsets $t\mathcal{A}$. This link allows us to tackle the classical problem of determining the polynomial $p_{\mathcal{A}} \in \mathbb{Q}[t]$ such that $|t\mathcal{A}| = p_{\mathcal{A}}(t)$ for all $t \geq t_0$ and the minimum integer $n_0(\mathcal{A}) \leq t_0$ for which this condition is satisfied, i.e. the so-called {\em phase transition} of $|t\mathcal{A}|$. We use the Castelnuovo--Mumford regularity and the geometry of $Y_{n,d_{\mathcal{A}}}$ to describe the polynomial $p_{\mathcal{A}}(t)$ and to derive new bounds for $n_0(\mathcal{A})$ under some technical assumptions on the convex hull of $\mathcal{A}$; and vice versa we apply the theory of sumsets to obtain geometric information of the varieties $Y_{n,d_{\mathcal{A}}}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源