论文标题
核自旋偏振子形成:各向异性效应和量子相变
Nuclear spin polaron-formation: anisotropy effects and quantum phase transition
论文作者
论文摘要
从理论上讲,我们研究了Lindblad方程方法中半导体纳米系统中核旋转极化状态的形成。为此,我们为密度运算符得出一个通用的lindblad方程,该方程符合汉密尔顿系统的对称性,并针对局部电荷载体的核旋转极性形成介绍,而在光学冷却核时,经受任意各向异性超精神相互作用。对各向异性中央自旋模型的密度基质的稳态溶液作为电子和核自旋浴温度的函数。电子核自旋相关器以及核自旋分布功能的数据的结果是旋转键入的量度。它们两者的特征清楚地表明,在低温下,跨温度与量子波动的增强相吻合,并与临界温度线的平均场预测一致。我们可以鉴定出取决于高精细各向异性的两个不同的极性状态,这些状态在各向同性点处通过量子相变而分开。这些状态反映在实验中通过自旋噪声测量在实验中访问的时间自旋自动相关函数。
We study theoretically the formation of the nuclear-spin polaron state in semiconductor nanosystems within the Lindblad equation approach. To this end, we derive a general Lindblad equation for the density operator that complies with the symmetry of the system Hamiltonian and address the nuclear-spin polaron formation for localized charge carriers subject to an arbitrarily anisotropic hyperfine interaction when optically cooling the nuclei. The steady-state solution of the density matrix for an anisotropic central spin model is presented as a function of the electron and nuclear spin bath temperature. Results for the electron-nuclear spin correlator as well as data for the nuclear spin distribution function serve as a measure of spin-entanglement. The features in both of them clearly indicate the formation of the nuclear polaron state at low temperatures where the crossover regime coincides with an enhancement of quantum fluctuations and agrees with the mean-field prediction of the critical temperature line. We can identify two distinct polaron states dependent upon the hyperfine anisotropy which are separated by a quantum phase transition at the isotropic point. These states are reflected in the temporal spin auto-correlation functions accessible in experiment via spin-noise measurements.