论文标题

RERRFACT:减少有关科学主张验证的证据检索表达

RerrFact: Reduced Evidence Retrieval Representations for Scientific Claim Verification

论文作者

Rana, Ashish, Khanna, Deepanshu, Ghosal, Tirthankar, Singh, Muskaan, Singh, Harpreet, Rana, Prashant Singh

论文摘要

数字信息渠道和发布竞赛的指数增长使科学错误信息比以往任何时候都更加普遍。但是,事实验证给定科学主张的任务即使对于研究人员来说也不是一件直接的。科学主张验证需要深入的知识和来自领域专家的巨大劳动,以证实并反驳可靠的科学来源的证据。 Scifact数据集和相应的任务为社区提供了基准测试排行榜,以通过从源摘要中提取和吸收相关的证据理由来开发自动的科学索赔验证系统。在这项工作中,我们提出了一种模块化方法,该方法按照Scifact排行榜在每个预测子任务中顺序进行二进制分类。我们简单的基于分类器的方法使用简化的摘要表示来检索相关的摘要。这些进一步用于训练相关的理由选择模型。最后,我们进行了两步的立场预测,以首先区分非相关的理由,然后确定给定索赔的支持或反驳理由。在实验上,我们的系统无需微调,简单的设计,而模型参数的一部分在排行榜上与大规模,模块化和关节建模方法相竞争。我们在https://github.com/ashishrana160796/rerrfact上提供代码库。

Exponential growth in digital information outlets and the race to publish has made scientific misinformation more prevalent than ever. However, the task to fact-verify a given scientific claim is not straightforward even for researchers. Scientific claim verification requires in-depth knowledge and great labor from domain experts to substantiate supporting and refuting evidence from credible scientific sources. The SciFact dataset and corresponding task provide a benchmarking leaderboard to the community to develop automatic scientific claim verification systems via extracting and assimilating relevant evidence rationales from source abstracts. In this work, we propose a modular approach that sequentially carries out binary classification for every prediction subtask as in the SciFact leaderboard. Our simple classifier-based approach uses reduced abstract representations to retrieve relevant abstracts. These are further used to train the relevant rationale-selection model. Finally, we carry out two-step stance predictions that first differentiate non-relevant rationales and then identify supporting or refuting rationales for a given claim. Experimentally, our system RerrFact with no fine-tuning, simple design, and a fraction of model parameters fairs competitively on the leaderboard against large-scale, modular, and joint modeling approaches. We make our codebase available at https://github.com/ashishrana160796/RerrFact.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源