论文标题
用户满意度估计与以目标对话系统的顺序对话ACT建模有关
User Satisfaction Estimation with Sequential Dialogue Act Modeling in Goal-oriented Conversational Systems
论文作者
论文摘要
用户满意度估计(使用)是面向目标的对话系统中的重要但挑战性的任务。用户是否对系统感到满意,在很大程度上取决于用户需求的满足,这可以被用户的对话行为暗示。但是,现有的研究通常忽略了对话法的顺序转变,或者在利用对话行为促进使用时严重依赖于注释的对话行为标签。在本文中,我们提出了一个新颖的框架,即USDA,以通过共同学习用户满意度估计和对话ACT识别任务来结合对话ACT的顺序动态,以预测用户满意度。具体而言,我们首先采用层次变压器来编码整个对话上下文,并采用两种任务自适应的预训练策略,成为第二阶段的室内预训练,以增强对话建模能力。在对话法案标签的可用性方面,我们进一步开发了USDA的两个变体,以以受监督或无监督的方式捕获“对话法”信息。最后,USDA利用对话中内容和ACT功能的顺序转换,以预测用户满意度。跨不同应用程序的四个基准目标对话数据集的实验结果表明,所提出的方法基本上优于现有的使用方法,并验证对话ACT序列在使用中的重要作用。
User Satisfaction Estimation (USE) is an important yet challenging task in goal-oriented conversational systems. Whether the user is satisfied with the system largely depends on the fulfillment of the user's needs, which can be implicitly reflected by users' dialogue acts. However, existing studies often neglect the sequential transitions of dialogue act or rely heavily on annotated dialogue act labels when utilizing dialogue acts to facilitate USE. In this paper, we propose a novel framework, namely USDA, to incorporate the sequential dynamics of dialogue acts for predicting user satisfaction, by jointly learning User Satisfaction Estimation and Dialogue Act Recognition tasks. In specific, we first employ a Hierarchical Transformer to encode the whole dialogue context, with two task-adaptive pre-training strategies to be a second-phase in-domain pre-training for enhancing the dialogue modeling ability. In terms of the availability of dialogue act labels, we further develop two variants of USDA to capture the dialogue act information in either supervised or unsupervised manners. Finally, USDA leverages the sequential transitions of both content and act features in the dialogue to predict the user satisfaction. Experimental results on four benchmark goal-oriented dialogue datasets across different applications show that the proposed method substantially and consistently outperforms existing methods on USE, and validate the important role of dialogue act sequences in USE.