论文标题
使用深厚的增强学习优化华法林的剂量
Optimizing Warfarin Dosing using Deep Reinforcement Learning
论文作者
论文摘要
华法林是一种广泛使用的抗凝剂,具有狭窄的治疗范围。华法林的剂量应该是个性化的,因为少量服药或剂量不足会带来灾难性甚至致命的后果。尽管对华法林的剂量进行了大量研究,但目前的给药方案仍未达到预期,尤其是对于对华法林敏感的患者。我们为华法林提出了一个基于强化的基于学习的剂量模型。为了克服剂量试验中样本量相对较小的问题,我们使用华法林的药代动力学/药效学(PK/ PD)模型来模拟虚拟患者的剂量反应。在虚拟测试患者上应用所提出的算法表明,该模型的表现优于一组临床上接受的给药方案。我们在第二个PK/PD模型上测试了剂量协议的鲁棒性,并表明其性能与基线协议集相当。
Warfarin is a widely used anticoagulant, and has a narrow therapeutic range. Dosing of warfarin should be individualized, since slight overdosing or underdosing can have catastrophic or even fatal consequences. Despite much research on warfarin dosing, current dosing protocols do not live up to expectations, especially for patients sensitive to warfarin. We propose a deep reinforcement learning-based dosing model for warfarin. To overcome the issue of relatively small sample sizes in dosing trials, we use a Pharmacokinetic/ Pharmacodynamic (PK/PD) model of warfarin to simulate dose-responses of virtual patients. Applying the proposed algorithm on virtual test patients shows that this model outperforms a set of clinically accepted dosing protocols by a wide margin. We tested the robustness of our dosing protocol on a second PK/PD model and showed that its performance is comparable to the set of baseline protocols.