论文标题

斜率和链接的一致性

Slope and concordance of links

论文作者

Degtyarev, Alex, Florens, Vincent, Lecuona, Ana G.

论文摘要

坡度是具有杰出组件的彩色链接的同位素不变,最初是由作者引入的,以描述剪接签名的计算中的额外校正项。它似乎与几个经典不变式密切相关,例如Conway电位函数或Kojima ETA功能(定义针对两个组件链路定义)。在本文中,我们证明了斜坡在链接的彩色一致性下是不变的。此外,我们提出了一个公式来计算c复合物和广义塞弗特形式的斜率。

The slope is an isotopy invariant of colored links with a distinguished component, initially introduced by the authors to describe an extra correction term in the computation of the signature of the splice. It appeared to be closely related to several classical invariants, such as the Conway potential function or the Kojima eta-function (defined for two-components links). In this paper, we prove that the slope is invariant under colored concordance of links. Besides, we present a formula to compute the slope in terms of C-complexes and generalized Seifert forms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源