论文标题

对象检测预训练的点级区域对比

Point-Level Region Contrast for Object Detection Pre-Training

论文作者

Bai, Yutong, Chen, Xinlei, Kirillov, Alexander, Yuille, Alan, Berg, Alexander C.

论文摘要

在这项工作中,我们提出了点级区域的对比,这是一种自我监督的预训练方法,用于对象检测任务。这种方法是由检测的两个关键因素激发的:本地化和识别。虽然准确的本地化有利于在像素或点级上运行的模型,但正确的识别通常依赖于对象的更整体,区域级别的视图。将这种观点纳入预训练中,我们的方法通过直接从不同地区进行单个点对进行对比学习。与每个区域的汇总表示相比,我们的方法对输入区域质量的变化更为强大,并进一步使我们能够通过培训期间通过在线知识蒸馏隐式地改善初始区域分配。在处理无监督环境中遇到的不完善区域时,这两个优点都是重要的。实验显示了点级区域的对比有改进的对象检测和分割多个任务和数据集的最新预训练方法,我们提供了广泛的消融研究和可视化以帮助理解。代码将提供。

In this work we present point-level region contrast, a self-supervised pre-training approach for the task of object detection. This approach is motivated by the two key factors in detection: localization and recognition. While accurate localization favors models that operate at the pixel- or point-level, correct recognition typically relies on a more holistic, region-level view of objects. Incorporating this perspective in pre-training, our approach performs contrastive learning by directly sampling individual point pairs from different regions. Compared to an aggregated representation per region, our approach is more robust to the change in input region quality, and further enables us to implicitly improve initial region assignments via online knowledge distillation during training. Both advantages are important when dealing with imperfect regions encountered in the unsupervised setting. Experiments show point-level region contrast improves on state-of-the-art pre-training methods for object detection and segmentation across multiple tasks and datasets, and we provide extensive ablation studies and visualizations to aid understanding. Code will be made available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源