论文标题

对流湍流中纳米颗粒的湍流转运的实验研究

Experimental study of turbulent transport of nanoparticles in convective turbulence

论文作者

Shimberg, I., Shriki, O., Shildkrot, O., Kleeorin, N., Levy, A., Rogachevskii, I.

论文摘要

我们对纳米颗粒在对流湍流中的湍流运输进行实验研究,而气流中的雷利数$ \ sim 10^8 $。我们通过配备11个e-thermocouples的温度探针来测量许多位置的温度场。直径$ \ sim 70 $ nm的纳米颗粒由高级电喷雾器发电机产生。为了确定纳米颗粒的数量密度,我们使用冷凝颗粒计数器。我们证明,湍流效应的联合作用(在核心流动中很重要)和分子效应(在腔室边界附近必不可少)导致纳米颗粒在腔室的冷壁上有效积累。湍流作用的特征是纳米颗粒的湍流扩散和湍流的热扩散,而分子效应则通过布朗的扩散和热疗法来描述,以及纳米颗粒在腔室的冷壁上的粘附。在底部和顶壁之间的温度差$ΔT$之间的对流湍流的不同实验中,在$ΔT= 29 $ K到$ΔT= 61 $ K之间变化,我们发现纳米粒子的平均数量密度在时间上呈指数下降。例如,纳米颗粒平均数量密度的特征衰减时间从$ΔT= 61 $ k到24分钟的12.8分钟不等,$ΔT= 29 $K。为了更好地理解实验结果,我们对纳米群的平均数量密度的实验实验进行了一维平均值数值模拟。获得的数值结果与实验结果非常吻合。

We perform experimental study of turbulent transport of nanoparticles in convective turbulence with the Rayleigh number $\sim 10^8$ in the air flow. We measure temperature field in many locations by a temperature probe equipped with 11 E-thermocouples. Nanoparticles of the size $\sim 70$ nm in diameter are produced by Advanced Electrospray Aerosol Generator. To determine the number density of nanoparticles, we use Condensation Particle Counter. We demonstrate that the joint action of turbulent effects (which are important in the core flow) and molecular effects (which are essential near the boundaries of the chamber) results in an effective accumulation of nanoparticles at the cold wall of the chamber. The turbulent effects are characterised by turbulent diffusion and turbulent thermal diffusion of nanoparticles, while the molecular effects are described by the Brownian diffusion and thermophoresis, as well as the adhesion of nanoparticles at the cold wall of the chamber. In different experiments in convective turbulence in a chamber with the temperature difference $ΔT$ between the bottom and top walls varying between $ΔT= 29$ K to $ΔT= 61$ K, we find that the mean number density of nanoparticles decreases exponentially in time. For instance, the characteristic decay time of the mean number density of nanoparticles varies from 12.8 min for $ΔT= 61$ K to 24 min for $ΔT= 29$ K. For better understanding of experimental results, we perform one-dimensional mean-field numerical simulations of the evolution of the mean number density of nanoparticles for conditions pertinent to the laboratory experiments. The obtained numerical results are in a good agreement with the experimental results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源