论文标题
内核有条件的对比度学习
Conditional Contrastive Learning with Kernel
论文作者
论文摘要
条件对比学习框架考虑了条件抽样程序,该过程构建了以特定变量为条件的正或负数据对。公平的对比学习构建负面对,例如,从相同的性别(敏感信息的条件)中,这又减少了从学习的表示形式中的不良信息;弱监督的对比学习结构构造具有相似的注释属性(根据辅助信息条件)的正面对,而这些构建对形成又又纳入了表示形式。尽管有条件的对比学习可以实现许多应用程序,但是如果我们无法获得适应变量的某些值的足够数据对,则条件采样程序可能会具有挑战性。本文用内核(CCL-K)提出了条件对比度学习,该学习将现有的条件对比目标转换为替代形式,以减轻数据不足。 CCL-K不是根据条件变量的值对数据进行采样,而是使用内核条件嵌入操作员,从所有可用数据中对数据进行采样,并将权重分配给每个采样数据,鉴于条件变量的值之间的内核相似性。我们使用弱监督,公平和艰苦的否定性对比学习进行实验,显示CCL-K的表现优于最先进的基线。
Conditional contrastive learning frameworks consider the conditional sampling procedure that constructs positive or negative data pairs conditioned on specific variables. Fair contrastive learning constructs negative pairs, for example, from the same gender (conditioning on sensitive information), which in turn reduces undesirable information from the learned representations; weakly supervised contrastive learning constructs positive pairs with similar annotative attributes (conditioning on auxiliary information), which in turn are incorporated into the representations. Although conditional contrastive learning enables many applications, the conditional sampling procedure can be challenging if we cannot obtain sufficient data pairs for some values of the conditioning variable. This paper presents Conditional Contrastive Learning with Kernel (CCL-K) that converts existing conditional contrastive objectives into alternative forms that mitigate the insufficient data problem. Instead of sampling data according to the value of the conditioning variable, CCL-K uses the Kernel Conditional Embedding Operator that samples data from all available data and assigns weights to each sampled data given the kernel similarity between the values of the conditioning variable. We conduct experiments using weakly supervised, fair, and hard negatives contrastive learning, showing CCL-K outperforms state-of-the-art baselines.