论文标题

智能制造的数据驱动的多保真物理知识学习框架:复合材料处理案例研究

A Data-driven Multi-fidelity Physics-informed Learning Framework for Smart Manufacturing: A Composites Processing Case Study

论文作者

Ramezankhani, Milad, Nazemi, Amir, Narayan, Apurva, Voggenreiter, Heinz, Harandi, Mehrtash, Seethaler, Rudolf, Milani, Abbas S.

论文摘要

尽管在不同的科学领域成功实现了物理信息的神经网络,但已表明,对于复杂的非线性系统,实现准确的模型需要广泛的高参数调整,网络体系结构设计以及昂贵且详尽的培训过程。为了避免这种障碍并使对物理信息模型的培训降低不稳定,在本文中,基于转移学习原理提出了一个数据驱动的多依据物理学框架。该框架结合了低保真辅助系统的知识,并有限地从目标实际系统的数据标记数据,以显着提高常规物理知识模型的性能。在最大程度地减少为手头问题设计复杂的任务网络的努力时,提议的设置将物理知识的模型指导物理学模型,以快速有效地收敛到全球最佳。一种自适应加权方法用于进一步增强训练过程中模型综合损失函数的优化。还引入了一种数据驱动的策略,以维持在低保真行为和高保真行为之间存在明显差异的子域中的高性能。研究了正在接受治疗周期的复合材料的传热作为案例研究,以证明与常规物理信息模型相比,提出的框架的性能。

Despite the successful implementations of physics-informed neural networks in different scientific domains, it has been shown that for complex nonlinear systems, achieving an accurate model requires extensive hyperparameter tuning, network architecture design, and costly and exhaustive training processes. To avoid such obstacles and make the training of physics-informed models less precarious, in this paper, a data-driven multi-fidelity physics-informed framework is proposed based on transfer learning principles. The framework incorporates the knowledge from low-fidelity auxiliary systems and limited labeled data from target actual system to significantly improve the performance of conventional physics-informed models. While minimizing the efforts of designing a complex task-specific network for the problem at hand, the proposed settings guide the physics-informed model towards a fast and efficient convergence to a global optimum. An adaptive weighting method is utilized to further enhance the optimization of the model composite loss function during the training process. A data-driven strategy is also introduced for maintaining high performance in subdomains with significant divergence between low- and high-fidelity behaviours. The heat transfer of composite materials undergoing a cure cycle is investigated as a case study to demonstrate the proposed framework's performance compared to conventional physics-informed models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源