论文标题

通过INLA-SPDE方法的大规模时空野火计数和烧毁区域数据的联合建模和预测

Joint Modeling and Prediction of Massive Spatio-Temporal Wildfire Count and Burnt Area Data with the INLA-SPDE Approach

论文作者

Zhang, Zhongwei, Krainski, Elias, Zhong, Peng, Rue, Håvard, Huser, Raphaël

论文摘要

本文介绍了Redsea团队在EVA 2021会议组织的数据竞赛中使用的方法。我们开发了一个新颖的两部分模型,以共同描述竞争组织者提供的协变量的野火计数数据和烧毁的区域数据。我们提出的方法依赖于集成的嵌套拉普拉斯近似结合了随机部分微分方程(INLA-SPDE)方法。在第一部分中,二进制非平稳时空模型用于描述确定在特定时间和位置是否存在野火的基础过程。在第二部分中,我们考虑了一个非平稳模型,该模型基于正野火计数数据的对数高斯的COX过程,以及用于正烧伤面积数据的非平稳logussian模型。正计数数据和正烧伤区域数据之间的依赖性是通过共享时空随机效应捕获的。我们的两部分建模方法在数据竞赛组织者选择的预测分数标准方面表现良好。此外,我们的模型结果表明,表面压力是发生野火的最具影响力的驱动力,而表面净太阳辐射和表面压力是大量野火的关键驱动因素,温度和蒸发是大型燃烧区域的关键驱动因素。

This paper describes the methodology used by the team RedSea in the data competition organized for EVA 2021 conference. We develop a novel two-part model to jointly describe the wildfire count data and burnt area data provided by the competition organizers with covariates. Our proposed methodology relies on the integrated nested Laplace approximation combined with the stochastic partial differential equation (INLA-SPDE) approach. In the first part, a binary non-stationary spatio-temporal model is used to describe the underlying process that determines whether or not there is wildfire at a specific time and location. In the second part, we consider a non-stationary model that is based on log-Gaussian Cox processes for positive wildfire count data, and a non-stationary log-Gaussian model for positive burnt area data. Dependence between the positive count data and positive burnt area data is captured by a shared spatio-temporal random effect. Our two-part modeling approach performs well in terms of the prediction score criterion chosen by the data competition organizers. Moreover, our model results show that surface pressure is the most influential driver for the occurrence of a wildfire, whilst surface net solar radiation and surface pressure are the key drivers for large numbers of wildfires, and temperature and evaporation are the key drivers of large burnt areas.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源