论文标题
分布式量子计算中的纠缠和因果关系
Entanglement and Causal Relation in distributed quantum computation
论文作者
论文摘要
在本文中,我们研究了分布式量子计算(DQC)中纠缠和经典交流的两个不同方面。 在第一部分中,我们通过引入新概念,即量子计算的量子网络编码来分析给定量子网络资源的可实施计算。我们考虑一个网络设置,其中网络每个边缘的量子通信仅限于发送一个Quibit,但经典通信并不是不受限制的。具体而言,我们分析了某些类似于群集网络的网络上可实施的$ k $ qubit统一操作。我们表明,在蝴蝶网络和Grail Network上,任何两个Qubit的统一操作均可实施,这是用于网络编码的基本原始网络。我们还为群集网络的单一操作的概率可实施性获得了必要的条件。 在第二部分中,我们调查了DQC中的资源权衡。首先,我们表明,可以通过增加古典交流的回合来替代地方国家歧视所需的纠缠。其次,我们通过使用本地操作的输出和输入之间的因果关系而没有预定的因果秩序(称为“经典交流”而没有预定义的因果秩序(CC*)),开发了确定性关节量子操作的新框架。我们表明本地操作和CC*(LOCC*)等效于可分离操作(SEP)。该结果表明,可以通过LOCC*模拟纠缠辅助的LOCC实施,而无需纠缠。我们还研究了LOCC*与另一种形式主义之间的关系,以确定性的联合量子操作,而没有基于量子过程形式主义假设预定义因果秩序。结果,我们使用LOCC*构建了非LOCC SEP的示例。
In this thesis, we investigate two different aspects of entanglement and classical communication in distributed quantum computation (DQC). In the first part, we analyze implementable computation over a given quantum network resource by introducing a new concept, quantum network coding for quantum computation. We consider a setting of networks where quantum communication for each edge of a network is restricted to sending one-qubit, but classical communication is unrestricted. Specifically, we analyze implementable $k$-qubit unitary operations over a certain class of networks, called cluster networks. We show that any two-qubit unitary operation is implementable over the butterfly network and the grail network, which are fundamental primitive networks for network coding. We also obtain necessary and sufficient conditions for the probabilistic implementability of unitary operations over cluster networks. In the second part, we investigate resource tradeoffs in DQC. First, we show that entanglement required for local state discrimination can be substituted by less entanglement by increasing the rounds of classical communication. Second, we develop a new framework of deterministic joint quantum operations by using a causal relation between the outputs and inputs of the local operations without predefined causal order, called "classical communication" without predefined causal order (CC*). We show that local operations and CC* (LOCC*) is equivalent to the separable operation (SEP). This result indicates that entanglement-assisted LOCC implementing SEP can be simulated by LOCC* without entanglement. We also investigate the relationship between LOCC* and another formalism for deterministic joint quantum operations without assuming predefined causal order based on the quantum process formalism. As a result, we construct an example of non-LOCC SEP by using LOCC*.