论文标题
从机器人技能演示中持续学习
Continual Learning from Demonstration of Robotics Skills
论文作者
论文摘要
向机器人教授运动技能的方法专注于一次对单一技能的培训。能够从演示中学习的机器人可以从学习新的运动技能的增加能力中受益匪浅,而不会忘记过去学到的知识。为此,我们提出了一种使用超网和神经常规微分方程求解器从演示中进行持续学习的方法。我们从经验上证明了这种方法在记住长轨迹学习任务序列中的有效性,而无需存储过去演示中的任何数据。我们的结果表明,超级核武器的表现优于其他最先进的持续学习方法,用于从演示中学习。在我们的实验中,我们使用流行的LASA基准测试,以及两个新的Kinesthetthic示范数据集收集了我们在本文中介绍的“ Helloworld and Robotasks数据集”中介绍的真实机器人。我们在物理机器人上评估了我们的方法,并证明了其在学习涉及改变位置和方向的现实世界机器人任务方面的有效性。我们报告轨迹错误指标和持续学习指标,并提出了两个新的持续学习指标。我们的代码以及新收集的数据集可在https://github.com/sayantanauddy/clfd上找到。
Methods for teaching motion skills to robots focus on training for a single skill at a time. Robots capable of learning from demonstration can considerably benefit from the added ability to learn new movement skills without forgetting what was learned in the past. To this end, we propose an approach for continual learning from demonstration using hypernetworks and neural ordinary differential equation solvers. We empirically demonstrate the effectiveness of this approach in remembering long sequences of trajectory learning tasks without the need to store any data from past demonstrations. Our results show that hypernetworks outperform other state-of-the-art continual learning approaches for learning from demonstration. In our experiments, we use the popular LASA benchmark, and two new datasets of kinesthetic demonstrations collected with a real robot that we introduce in this paper called the HelloWorld and RoboTasks datasets. We evaluate our approach on a physical robot and demonstrate its effectiveness in learning real-world robotic tasks involving changing positions as well as orientations. We report both trajectory error metrics and continual learning metrics, and we propose two new continual learning metrics. Our code, along with the newly collected datasets, is available at https://github.com/sayantanauddy/clfd.