论文标题
深入研究一贯有毒的Twitter的1%
A deep dive into the consistently toxic 1% of Twitter
论文作者
论文摘要
在线社交网络(OSN)中的不当行为是一种不断增长的现象。迄今为止,这项研究倾向于专注于机器学习的部署,以识别和分类不当行为的类型,例如欺凌,侵略和种族主义。识别的主要目标是遏制自然和机械不当行为,并使OSN成为社会话语的更安全的地方。除了过去的工作之外,我们对大量Twitter概况进行了纵向研究,这使我们能够以它们始终如一地发布有毒内容来表征概况。我们的数据涵盖了122k Twitter配置文件的14年推文和超过293m的推文。从这些数据中,我们从有毒内容的一致性方面选择了最极端的概况,并检查了他们共享的域,主题标签和URL。我们发现,这些选定的配置文件保持狭窄的主题,其主题标签,URL和域的多样性较低,它们在主题上是相似的(以协调的方式,如果不是通过意图),并且具有较高的机器人样行为(可能具有具有影响力的祖细胞有影响力的行为)。我们的工作为研究界贡献了一个实质性和纵向的在线行为不当数据集,并确立了个人资料的有毒行为的一致性,作为探索行为不当的可能因素,是影响OSN运营的潜在配件。
Misbehavior in online social networks (OSN) is an ever-growing phenomenon. The research to date tends to focus on the deployment of machine learning to identify and classify types of misbehavior such as bullying, aggression, and racism to name a few. The main goal of identification is to curb natural and mechanical misconduct and make OSNs a safer place for social discourse. Going beyond past works, we perform a longitudinal study of a large selection of Twitter profiles, which enables us to characterize profiles in terms of how consistently they post highly toxic content. Our data spans 14 years of tweets from 122K Twitter profiles and more than 293M tweets. From this data, we selected the most extreme profiles in terms of consistency of toxic content and examined their tweet texts, and the domains, hashtags, and URLs they shared. We found that these selected profiles keep to a narrow theme with lower diversity in hashtags, URLs, and domains, they are thematically similar to each other (in a coordinated manner, if not through intent), and have a high likelihood of bot-like behavior (likely to have progenitors with intentions to influence). Our work contributes a substantial and longitudinal online misbehavior dataset to the research community and establishes the consistency of a profile's toxic behavior as a useful factor when exploring misbehavior as potential accessories to influence operations on OSNs.