论文标题

统一的烟雾和火灾检测在进化框架中,并具有自我监督的渐进数据增强

Unified smoke and fire detection in an evolutionary framework with self-supervised progressive data augment

论文作者

Zhang, Hang, Yang, Su, Wang, Hongyong, lu, zhongyan, sun, helin

论文摘要

很少有研究研究由于不同的身体性质导致不确定的流体模式,因此研究了烟雾和火焰伴随着火焰的同时检测。在这项研究中,我们收集了一个大图像数据集,将其重新标记为多标签图像分类问题,以便同时识别烟雾和火焰。为了通过具有不确定形状的可移动流体对象,诸如火和烟雾及其不紧凑的本质以及具有较高变化的复杂背景的不确定形状的可移动流体对象,以解决检测模型的概括能力,我们通过随机图像缝制进行数据增强方法,以部署,将其放置,变形,位置变化和更改,以使其更加差异。此外,我们通过使用类激活图来提取高度可信赖的区域作为积极示例的新数据来源,以进一步增强数据增强,提出了一种自学习数据增强方法。通过迭代执行的数据增强和检测模型之间的相互加固,两个模块都以进化方式取得进展。实验表明,所提出的方法可以有效地改善并发烟雾和火灾检测模型的概括性能。

Few researches have studied simultaneous detection of smoke and flame accompanying fires due to their different physical natures that lead to uncertain fluid patterns. In this study, we collect a large image data set to re-label them as a multi-label image classification problem so as to identify smoke and flame simultaneously. In order to solve the generalization ability of the detection model on account of the movable fluid objects with uncertain shapes like fire and smoke, and their not compactible natures as well as the complex backgrounds with high variations, we propose a data augment method by random image stitch to deploy resizing, deforming, position variation, and background altering so as to enlarge the view of the learner. Moreover, we propose a self-learning data augment method by using the class activation map to extract the highly trustable region as new data source of positive examples to further enhance the data augment. By the mutual reinforcement between the data augment and the detection model that are performed iteratively, both modules make progress in an evolutionary manner. Experiments show that the proposed method can effectively improve the generalization performance of the model for concurrent smoke and fire detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源