论文标题

用于学习胃组织学的多尺度混合视觉变压器:基于AI的胃癌治疗决策支持系统

Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology: AI-Based Decision Support System for Gastric Cancer Treatment

论文作者

Oh, Yujin, Bae, Go Eun, Kim, Kyung-Hee, Yeo, Min-Kyung, Ye, Jong Chul

论文摘要

胃内窥镜筛查是在早期决定适当的胃癌(GC)治疗的有效方法,从而降低了与GC相关的死亡率。尽管人工智能(AI)带来了一个巨大的希望,可以帮助病理学家筛选数字化整个幻灯片图像,但现有的AI系统受到细粒癌症亚分类的限制,在计划癌症治疗方面几乎没有可用性。我们提出了一个实用的AI系统,该系统可以实现GC病理的五个子分类,可以直接与一般的GC治疗指南相匹配。 AI系统旨在通过模仿人类病理学家理解组织学的方式,通过使用2阶段混合视觉变压器(VIT)网络通过多尺度的自我注意力转变机制来有效地通过多尺度的自我发挥机制来区分多类GC。 AI系统通过从多中心队列中达到1,212张幻灯片来实现高于0.85的类平均灵敏度,以表现出可靠的诊断性能。此外,与人类病理学家相比,AI辅助病理学家显示出12%的诊断敏感性显着提高了12%。我们的结果表明,在实际临床环境中,AI辅助胃内镜筛查具有提供假定的病理学意见和胃癌的适当癌症治疗的巨大潜力。

Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate. Although artificial intelligence (AI) has brought a great promise to assist pathologist to screen digitalized whole slide images, existing AI systems are limited in fine-grained cancer subclassifications and have little usability in planning cancer treatment. We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance. The AI system is designed to efficiently differentiate multi-classes of GC through multi-scale self-attention mechanism using 2-stage hybrid Vision Transformer (ViT) networks, by mimicking the way how human pathologists understand histology. The AI system demonstrates reliable diagnostic performance by achieving class-average sensitivity of above 0.85 on a total of 1,212 slides from multicentric cohort. Furthermore, AI-assisted pathologists show significantly improved diagnostic sensitivity by 12% in addition to 18% reduced screening time compared to human pathologists. Our results demonstrate that AI-assisted gastric endoscopic screening has a great potential for providing presumptive pathologic opinion and appropriate cancer treatment of gastric cancer in practical clinical settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源