论文标题

重新思考帕累托前沿进行深度神经网络的性能评估

Rethinking Pareto Frontier for Performance Evaluation of Deep Neural Networks

论文作者

Nia, Vahid Partovi, Ghaffari, Alireza, Zolnouri, Mahdi, Savaria, Yvon

论文摘要

深度学习模型的性能优化是通过自动架构搜索或两者的组合进行的。另一方面,它们的性能很大程度上取决于目标硬件以及模型的成功培训。我们建议使用多维帕累托边境来重新定义候选深度学习模型的效率度量,在这些模型中,培训成本,推理潜伏期和准确性等几个变量在定义主要模型中起着相对的作用。此外,引入了多维帕累托前沿的随机版本,以减轻不同实验设置中深度学习模型的准确性,延迟和吞吐量的不确定性。可以将这两种互补方法组合起来,以对深度学习模型进行客观的基准测试。我们所提出的方法应用于经过Imagenet数据训练的广泛的深层图像分类模型。我们的方法将竞争变量与随机性质结合在单个相对效率度量中。这允许对深度学习模型进行排名,这些模型可以在不同的硬件上有效运行,并将推理效率与培训效率相结合。

Performance optimization of deep learning models is conducted either manually or through automatic architecture search, or a combination of both. On the other hand, their performance strongly depends on the target hardware and how successfully the models were trained. We propose to use a multi-dimensional Pareto frontier to re-define the efficiency measure of candidate deep learning models, where several variables such as training cost, inference latency, and accuracy play a relative role in defining a dominant model. Furthermore, a random version of the multi-dimensional Pareto frontier is introduced to mitigate the uncertainty of accuracy, latency, and throughput of deep learning models in different experimental setups. These two complementary methods can be combined to perform objective benchmarking of deep learning models. Our proposed method is applied to a wide range of deep image classification models trained on ImageNet data. Our method combines competing variables with stochastic nature in a single relative efficiency measure. This allows ranking deep learning models that run efficiently on different hardware, and combining inference efficiency with training efficiency objectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源