论文标题

基于ADOMIAN分解的流程模拟数值方案

Adomian Decomposition Based Numerical Scheme for Flow Simulations

论文作者

Garcia-Beristain, Imanol, Remaki, Lakhdar

论文摘要

本文提出了一种基于用于时间离散化的ADOMIAN分解方法,应用于Euler方程。证明了递归属性,该属性允许以适当有效的方式制定该方法。为了获得完全数值的方案,使用经典DG技术实现了空间离散化。通过与精确解决方案和流行的Runge-Kutta DG方法结果相比,通过数值测试证明了获得的数值方案的效率。

This paper proposes a numerical method based on the Adomian decomposition approach for the time discretization, applied to Euler equations. A recursive property is demonstrated that allows to formulate the method in an appropriate and efficient way. To obtain a fully numerical scheme, the space discretization is achieved using the classical DG techniques. The efficiency of the obtained numerical scheme is demonstrated through numerical tests by comparison to exact solution and the popular Runge-Kutta DG method results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源