论文标题
卷积神经网络和星系图像的光度红移估计:在数据驱动方法中解决偏见的案例研究
Photometric Redshift Estimation with Convolutional Neural Networks and Galaxy Images: A Case Study of Resolving Biases in Data-Driven Methods
论文作者
论文摘要
在天体物理研究中,深度学习模型越来越多地被利用,但是这种数据驱动的算法容易产生有偏见的输出,这是对随后的分析的有害。在这项工作中,我们研究了两种主要形式的偏见,即依赖类的残留物和模式崩溃,这是在使用卷积神经网络(CNN)和具有光谱红移的星系图像估算光度红移作为分类问题的案例研究中。我们专注于点估计,并提出了一组连续步骤,以基于CNN模型解决这两个偏差,涉及用多通道输出的表示学习,平衡训练数据并利用软标签。残差可以看作是光谱红移或光度降缩的函数,相对于这两个定义的偏见是不兼容的,应以分裂方式处理。我们建议在光谱空间中解决偏差是解决光度空间中偏差的先决条件。实验表明,与基准方法相比,我们的方法在控制偏差方面具有更好的能力,并且在带有高质量数据的不同实施和训练条件下表现出健壮性。我们的方法对未来的宇宙学调查有希望,这些调查需要良好的偏见约束,并且可以应用于回归问题和其他利用数据驱动模型的研究。尽管如此,偏见差异权衡以及对足够统计的需求表明,需要开发更好的方法论并优化数据使用策略。
Deep Learning models have been increasingly exploited in astrophysical studies, yet such data-driven algorithms are prone to producing biased outputs detrimental for subsequent analyses. In this work, we investigate two major forms of biases, i.e., class-dependent residuals and mode collapse, in a case study of estimating photometric redshifts as a classification problem using Convolutional Neural Networks (CNNs) and galaxy images with spectroscopic redshifts. We focus on point estimates and propose a set of consecutive steps for resolving the two biases based on CNN models, involving representation learning with multi-channel outputs, balancing the training data and leveraging soft labels. The residuals can be viewed as a function of spectroscopic redshifts or photometric redshifts, and the biases with respect to these two definitions are incompatible and should be treated in a split way. We suggest that resolving biases in the spectroscopic space is a prerequisite for resolving biases in the photometric space. Experiments show that our methods possess a better capability in controlling biases compared to benchmark methods, and exhibit robustness under varying implementing and training conditions provided with high-quality data. Our methods have promises for future cosmological surveys that require a good constraint of biases, and may be applied to regression problems and other studies that make use of data-driven models. Nonetheless, the bias-variance trade-off and the demand on sufficient statistics suggest the need for developing better methodologies and optimizing data usage strategies.