论文标题
张量相互作用作为$^{44} $ ti中集群结构的救赎的作用
Role of Tensor Interaction as Salvation of Cluster Structure in $^{44}$Ti
论文作者
论文摘要
背景:已知$^{44} $ ti核具有$^{40} $ CA+$ $ $α$群集结构,并且已经观察到反转双线结构;但是,当由于自旋轨道相互作用而允许$α$簇的破裂时,$α$簇结构往往会被洗掉。然而,$α$聚集在中等重型核中是一个非常热门的主题。 目的:已知张量相互作用在$^4 $ he核的强结合中起着至关重要的作用,该核诱导了两粒子两孔(2p2h)激发。由于当另一个核接近时,这种激发被阻止,因此值得表明张量效应是否有效地保持$^4 $ HE和$^{40} $ CA之间的距离,并成为$^{44} $ TI中的聚类的救赎。 方法:通过使用作者开发的反对称化准簇模型(AQCM),旋转轨道效应包括在群集模型中。我们还开发了简化方法的改进版本,以包括张量贡献($ i $ smt),这使我们能够估算群集模型中的张量效应。这两者的竞争首次在中等重型的群众区域进行了研究。 结果:根据AQCM的说法,自旋轨道相互作用完全打破了$α$群集,并恢复$ jj $ - 耦合壳模型的对称性,当$α$ cluster接近$^{40} $ ca core时。另一方面,由于张量效应,$ i $ smt在$α$和$^{40} $ CA之间的距离很大。 结论:在$^{44} $ ti中,由于具有强大的自旋轨道和张量的贡献,两种完全不同的配置($ JJ $ - 偶联的壳模型和群集状态)几乎变性,并且它们的混合变得很重要。
Background: The $^{44}$Ti nucleus has been known to have a $^{40}$Ca+$α$ cluster structure, and inversion doublet structure has been observed; however, $α$ cluster structure tends to be washed out when the breaking of the $α$ cluster is allowed due to the spin-orbit interaction. Nevertheless, $α$ clustering in medium-heavy nuclei is quite a hot subject recently. Purpose: The tensor interaction has been known to play an essential role in the strong binding of the $^4$He nucleus, which induces the two-particle-two-hole (2p2h) excitation. Since this excitation is blocked when another nucleus approaches, it is worthwhile to show whether the tensor effect works to keep the distance between $^4$He and $^{40}$Ca and becomes the salvation of the clustering in $^{44}$Ti. Methods: The spin-orbit effect is included in the cluster model by using the antisymmetrized quasi cluster model (AQCM) developed by the authors. We have also developed an improved version of the simplified method to include the tensor contribution ($i$SMT), which allows us to estimate the tensor effect within the cluster model. The competition of these two is investigated in the medium-heavy mass region for the first time. Results: According to AQCM, the spin-orbit interaction completely breaks the $α$ cluster and restores the symmetry of $jj$-coupling shell model when the $α$ cluster approaches the $^{40}$Ca core. On the other hand, $i$SMT gives a large distance between $α$ and $^{40}$Ca due to the tensor effect. Conclusions: In $^{44}$Ti, because of the strong spin-orbit and tensor contributions, two completely different configurations ($jj$-coupling shell model and cluster states) almost degenerate, and their mixing becomes important.