论文标题
机器学习辅助量子控制在随机环境中
Machine-learning assisted quantum control in random environment
论文作者
论文摘要
冷凝物质和原子物理学中的疾病负责各种引人入胜的量子现象,这些现象仍然具有挑战性的理解,更不用说相关的动力控制了。在这里,我们介绍该概念的证明,并分析基于神经网络的机器学习算法,以实现随机环境中粒子的可行高保真量子控制。为了明确证明其能力,我们表明卷积神经网络能够解决此问题,因为它们可以识别该疾病,并且通过监督学习,进一步为在时间依赖的随机潜力中进一步制定了有效的量子粒子的低能量成本控制的政策。我们已经表明,提出的算法的准确性通过对疾病模式的高维映射和使用两个神经网络的较高绘制来提高,每个神经网络都经过适当训练了给定的任务。该设计的方法在计算上比梯度降低的优化更有效,可以适用于以启发式为基础识别和控制各种嘈杂的量子系统。
Disorder in condensed matter and atomic physics is responsible for a great variety of fascinating quantum phenomena, which are still challenging for understanding, not to mention the relevant dynamical control. Here we introduce proof of the concept and analyze neural network-based machine learning algorithm for achieving feasible high-fidelity quantum control of a particle in random environment. To explicitly demonstrate its capabilities, we show that convolutional neural networks are able to solve this problem as they can recognize the disorder and, by supervised learning, further produce the policy for the efficient low-energy cost control of a quantum particle in a time-dependent random potential. We have shown that the accuracy of the proposed algorithm is enhanced by a higher-dimensional mapping of the disorder pattern and using two neural networks, each properly trained for the given task. The designed method, being computationally more efficient than the gradient-descent optimization, can be applicable to identify and control various noisy quantum systems on a heuristic basis.